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Developing Tunable Machine Learning  

Workflow for Traffic Analysis in SDN 

Sama Salam Samaan1, Hassan Awheed Jeiad1 

Abstract: Traffic monitoring is a critical issue in networking in general, especially 

in SDN due to its layered architecture in which the control plane represents a single 

point of failure. Therefore, this paper is tailored to mitigate the control and mitigate 

the effect od the DDoS attacks in SDN networks. It presents a complete machine 

learning (ML) workflow that begins with data ingestion and end with a trained 

model that is capable of analyzing packets in a production network. Three ML 

pipelines are part of this workflow, where the training process is carried out on a 

distributed framework, i.e., Spark, to accomplish a near real time analysis for each 

flow of packets. To evaluate the performance of the suggested workflow, the LR-

HR DDoS 2024 dataset is employed. The decision tree model outperforms the 

remaining models with 99% of accuracy and 4 min 33 s of training time.  

Keywords: Machine learning pipeline, Machine learning workflow, SDN, Spark, 

Traffic analysis. 

1 Introduction 

The SDN architecture offers a unique opportunity to leverage big data 

analytics and tools like Spark for network traffic analysis and management, 

enabled by its advanced features, including the separation of the control plane 

from the data plane, a global network view, and network programmability [1, 2]. 

The recent advancements in high-speed data processing have opened up countless 

opportunities for the scientific and industrial sectors to delve into new domains. 

Big data analytics and SDN are two pivotal technologies that have played a major 

role in these remarkable accomplishments. 

While SDN offers a suitable control platform for traffic analysis, several 

technical challenges need to be addressed before it can be fully implemented [3]. 

To ensure efficient service performance and optimal resource utilization, the 
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SDN controller must meticulously analyze the vast volumes of data gathered on 

various network states and traffic loads [4]. In dynamic, large-scale SDN 

environments characterized by diverse network states and fluctuating traffic 

patterns, advanced data analysis and decision-making capabilities are 

essential−capabilities that conventional network traffic analysis methods struggle 

to provide. Additionally, the centralized design of SDN networks raises critical 

security concerns, as the SDN controller can become a single point of failure. 

Moreover, the current SDN standards do not enforce security protections due to 

implementation complexities, which could hinder SDN's widespread adoption 

over time. Consequently, these vulnerabilities are attracting increased attention 

from malicious attackers, making security threats a significant concern. 

This work is motivated by the desire to advance the field of SDN by 

incorporating big data analytics and tools to enhance network analysis 

capabilities. The motivation stems from optimizing SDN networks and improving 

their performance, scalability, and efficiency. Scalability and flexibility are 

crucial factors in addressing the dynamic nature of SDN networks. Leveraging 

Spark to build ML pipelines enables efficient handling of large-scale networks 

and adaptation to evolving network conditions.  

This work introduces an architecture for ML pipelines tailored for traffic 

analysis in SDN. Three ML pipelines are designed and persisted to support ML 

workflow operations, representing a novel approach to addressing traffic analysis 

challenges in SDN networks. Furthermore, a configurable ML workflow is 

proposed, comprising seven stages: Data Ingestion, Exploratory Data Analysis 

(EDA), Data Cleaning, Data Segregation, Machine Learning Pipeline Training, 

Model Evaluation, and Model Deployment. 

The workflow utilizes several Spark modules, including Spark SQL, Spark 

Streaming, and Spark ML. Spark SQL supports the EDA and Data Cleaning 

stages, Spark Streaming facilitates stream processing, and Spark ML is 

instrumental in constructing the proposed ML pipelines. 

The key contributions of this research are threefold. First, proposing a new ML 

pipeline architecture consisting of feature engineering and model training stages. 

Second, the architected pipelines are utilized within a tunable ML workflow to 

construct efficient and reliable models to detect DDoS attacks in SDN networks. 

Third, the ML workflow is evaluated using the “LR-HR DDoS 2024” dataset. 

2 Related Work 

This part of the work outlines the relevant studies that utilized ML and deep 

learning in traffic analysis in SDN, specifically, DDoS detection.  

C. Li et al. [5] utilized deep learning technique to build a DDoS detection 

model and defence system in an SDN environment. The model is able to identify 
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patterns in network traffic and detect historical network attack activities. The 

proposed system efficiently reduces DDoS attack traffic in SDN by minimizing 

dependency on the environment, streamlining real-time updates to the detection 

system, and facilitating easier upgrades or modifications to the detection strategy. 

Experimental validation using the ISCX dataset demonstrates the system's 

effectiveness, achieving high detection accuracy. The study in [6] uses XGBoost 

for DDoS detection in SDN-based clouds, utilizing POX controller and Mininet 

to simulate attacks. It presented XGBoost dominance in accuracy, speed, and 

scalability compared to other classifiers, addressing vital cloud security 

considerations by efficiently identifying DDoS patterns. M. Oo et al. [7] 

introduced an SDN-based approach for detecting DDoS attacks that minimizes 

disruptions to legitimate user activities. They also enhanced the Support Vector 

Machine (SVM) algorithm for improved DDoS attack detection. Their Advanced 

SVM (ASVM) technique employs a three-class classification method to 

effectively identify two types of flooding-based DDoS attacks. The method's 

performance was assessed using metrics such as false alarm rate, detection rate, 

and accuracy. Results revealed a detection accuracy of approximately 97%, with 

minimal training and testing times. 

R. Swami et al. [8] explored the impact of spoofed and non-spoofed TCP-

SYN flooding attacks on SDN controller resources. They created an intrusion 

detection system employing machine learning and evaluated five classification 

models from different algorithm families for traffic classification, using cross-

validation for validation. This approach enabled the extraction of more effective 

features and accurate traffic classification. Experimental results demonstrated 

that all the evaluated classification models performed satisfactorily. 

A. Singh et al. [9] presents SDN as a transformative approach for network 

analysis, highlighting its vulnerability to DDoS attacks. The paper’s major 

contributions include the creation of a large DDoS dataset, achieving 99.1% 

accuracy in DDoS detection using both Snort and ML with various algorithms. 

Two methods were employed for mitigation, dropping suspicious traffic and 

redirecting it to a different path. The paper also emphasizes the need for 

redundancy in network design, the unavailability of public SDN DDoS datasets, 

their plan to share their dataset for future research, and the significance of 

classifying normal and DDoS traffic in mitigation. 

Researchers continuously explore methods to detect DDoS attacks with 

improved efficiency and speed. The previous studies provide valuable knowledge 

about creating intelligent networks. However, based on our search, none of the 

existing studies utilized Spark for SDN traffic analysis, specifically DDoS 

detection. Spark is recognized as a robust big data processing framework that can 

construct ML models and train them on vast amounts of data faster than currently 

available tools. 
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3  Machine Learning Pipeline 
A ML pipeline is a series of interconnected stages to automate developing 

and deploying ML models. It streamlines designing, fine-tuning, and assessing 
the performance of a ML workflow [10]. It comprises a series of interconnected 
stages designed to automate the workflow [11]. The pipeline stages are executed 
sequentially, transforming the input DataFrame at each stage. In a ML pipeline, 
the output of one stage is used as the input to the next stage, where each stage can 
be categorized as either an estimator or a transformer. An estimator is an 
algorithm applied to a DataFrame to generate a transformer, while a transformer 
is an algorithm that modifies a DataFrame by removing, adding, or updating 
existing features. 

The ML pipeline provides several benefits, including parallel processing, code 
simplification, error reduction, time savings, and enhanced model performance 
[12]. Apache Spark is a popular big data processing framework with ML libraries 
such as MLlib [13]. It offers an efficient way to build ML pipelines at scale. 

3.1 Machine learning pipelines construction and persistence 
The proposed ML pipeline consists of five sequential stages: imputer, vector 

assembler, feature selection, standard scaler, and ML algorithm. The initial four 
stages encompass the data preprocessing and feature engineering stages. In the 
final stage, a specific ML algorithm is used to construct a specific ML pipeline. 
Therefore, three ML pipelines are constructed: decision tree (DT) pipeline, random 
forest (RF) pipeline, and logistic regression (LR) pipeline. These pipelines are 
persisted and loaded whenever training a ML model is needed. Fig. 1 shows the 
proposed ML pipeline. 

 
Fig. 1 – The proposed ML pipeline. 

 

The pipeline stages are explained as follows: 

A Imputer 
Dealing with missing values is a crucial step in machine learning, as many 

algorithms prohibit the presence of such values [14]. The imputer is a transformer 
used to impute missing values [15] using the numerical feature’s mean, median, 
or mode of the numerical feature [16]. In this work, the mean of each numerical 
feature is computed and used to replace the null values within that feature. The 
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input to this stage is a DataFrame with missing values, and the output is a 

DataFrame with no null values.  

B Vector assembler 

At this stage, the features are combined into a single vector to prepare them 

for the next stage, which is the feature selection stage. To do this, a transformer 

known as the vector assembler assembles multiple numerical columns into a 

single vector [17]. Vectors come in two forms: dense, which contains many 

distinct values, and sparse, with mostly zero values. A dense vector is created as 

an array containing all the values. A sparse vector is created by specifying the 

vector length, the indices of the non-zero elements, and their values. Sparse 

vectors are preferred when most values are zero because they are more compact. 

The input to this stage is the completed DataFrame from the Imputer stage, which 

consists of multiple separated columns. The output is a modified DataFrame with 

an additional column that contains the assembled features as a single vector. 

C Feature selection 

In this stage, the low-variance features are discarded using the variance 

threshold selector [18]. The variance of each feature is computed according to 

equation (1), in which 
2σ  represents the feature variance, xi is the feature value, 

x  is the feature mean, and n is the number of instances. 

 2 2
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The input to this stage is the output of the vector assembler stage, and the 

output is a modified DataFrame that contains the most informative features for 

the model training. 

D Standard scaler 

Some features in the input DataFrame showcases a wide range of values, 

ranging from small to large numbers. In this stage, a transformation is applied to 

each feature within the vector row, normalizing them to have a zero mean and a 

standard deviation of one [19]. Although this stage is not mandatory, it can 

significantly reduce the convergence time, making it an advantageous process to 

include. The input to this stage is the DataFrame resulting from the Feature Selection 

stage, and the output is a DataFrame containing each feature’s scaled values.  

E Machine learning algorithm 

It represents the final stage of the pipeline, where the ML model is built 

utilizing the outputs from the preceding stages. Three ML algorithms are used 

interchangeably in this process: 

1. Decision Tree: Decision Tree (DT) is a supervised learning algorithm 

that handles continuous and discrete data [20]. It uses frequency tables to 
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make predictions. Data in DT is split continuously according to a specific 

parameter. It is used to represent decisions and decision-making explicitly 

[21]. DT is a tree-based model characterized by its clarity in understanding 

decisions and the ability to select the most favourable features [22]. In 

addition, it can classify data without extensive computations [23].  

2. Random Forest: Random Forest (RF) is a supervised learning algorithm 

used in classification problems. Random Forests comprise many trees, 

specifically, many decision trees. One of RF’s strengths is its efficiency 

in handling massive training datasets [24]. 

3. Logistic Regression: Logistic Regression (LR) is a predictive supervised 

learning algorithm for classifying categorical variables. It is built utilizing 

the concept of probability.  

The input to this stage is the preprocessed DataFrame prepared for training, 

and the output is a trained model capable of learning the underlying patterns in 

the training data and making predictions on new, unseen data. 

4 The End-to-End Machine Learning Workflow 

The ML workflow is a sequence of stages to build a predictive model from 

data [25]. The sequence of these stages and their functionality may vary 

depending on the problem domain and the available historical data. The suggested 

ML workflow, Fig. 2, consists of seven stages: Data Ingestion, Exploratory Data 

Analysis, Data Cleaning, Data Segregation, ML Pipeline Training, Model 

Evaluation, and Model Deployment. Next, each stage in the workflow is clarified 

according to Fig. 2, which illustrates the suggested ML workflow stages. 

A Data ingestion 

In the suggested ML workflow, the first six stages represent the offline phase 

in which a static data source is required. The final stage, i.e., the model 

deployment stage, represents the online phase in which the data is generated in 

real-time; hence, it is considered a streaming data source. 

There are two types of data ingestion, batching and real-time. In batching 

data ingestion, the data moves from source to destination as batches at scheduled 

intervals. While in real-time ingestion, also known as streaming, data is collected 

and processed from diverse sources. This approach is used when the collected 

data is time-sensitive, such as traffic statistics in SDN networks.  

B Exploratory data analysis  

Exploratory Data Analysis (EDA) is an essential stage for initial explorations 

of the dataset to discover patterns, find anomalies, and check hypotheses with 

statistical measures and graphical representations. Spark SQL, part of the Spark 
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ecosystem, is used in the EDA stage as a distributed SQL query engine. The EDA 
stage consists of the following steps: 

1. DataFrame exploration: in this step, the DataFrame schema is 
discovered, and the data type of each column is identified.  

2. DataFrame statistical description: This step provides a statistical 
summary of the dataset. The count, minimum, maximum, mean, and 
standard deviation are found and computed for each feature. These 
statistics are utilized in the following stages of the ML workflow.  

 

 
Fig. 2 – The End-to-End ML Workflow. 

 

C Data cleaning 
Data cleaning involves preparing the DataFrame by removing unnecessary 

features and duplicated rows to ensure the suitability of data for analysis and 
modeling. This stage includes the following processes: 

– Removing nominal features: In this step, the columns with nominal data 
types are removed from the DataFrame. This is due to the restriction of the 
vector assembler, which is the second stage in the proposed ML pipeline, 
to accept only numeric, Boolean, and vector data types. 

– Removing duplicated records: Duplicated records are removed in this 
step since they can introduce non-random sampling and may bias the fitted 
model [26]. However, it is better to bypass this step when the dataset 
becomes unbalanced after removing the duplicated records. With such 
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dataset, a high accuracy will be acquired just by predicting the majority 

class, but the model will fail in capturing the minority class, which is the 

aim of creating the model.  

D Data segregation 

After the EDA process, the refined DataFrame is divided randomly into 70% 

allocated for training and the remaining 30% designated for testing. Two subsets 

are created, the first subset (training DataFrame) is used to fit the ML pipeline 

and produce the ML model, and the second subset (testing DataFrame) is used to 

assess the performance of the produced ML model. 

E Machine learning pipeline training 

During the training stage, the training DataFrame passes through the five 

stages of the ML pipeline (imputer, vector assembler, feature selection, standard 

scaler, and ML algorithm) to produce the ML model. As a result, three ML 

models are created, DT, RF, and LR. 

F Model evaluation 

In this stage, the testing DataFrame is utilized to assess the performance of 

the ML model by comparing the predicted results with the actual outcomes. Three 

ML models are evaluated: DT, RF, and LR models. The evaluation process 

includes accuracy measures [27] and ML pipeline training time measures. A 

block diagram illustrating the Data Segregation stage, the ML Pipeline Training 

stage, and the Model Evaluation stage is shown Fig. 3. 
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Fig. 3 – DataFrame segregation and ML pipeline construction and training. 
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G Model deployment 
At this stage, the trained model is deployed within the production network to 

generate predictions on incoming data. As depicted in Fig. 4, the suggested ML 
model deployment involves a messaging system, Spark Streaming, and the 
trained ML model. The messaging system facilitates traffic data transmission 
from the SDN controller to the Spark Streaming for necessary analysis and 
processing. The selected messaging system should be scalable, fault-tolerant, 
resilient, and able to handle vast amounts of real-time data with minimal delay.  

 
Fig. 4 – Model Deployment. 

 
Apache Kafka fulfils all these requirements [28]. Moreover, it can be 

integrated seamlessly with the SDN employed in this work, i.e., the 
OpenDayLight (ODL) controller, since it offers a northbound plugin enabling 
real-time event streaming into Kafka. The ODL controller publishes traffic flow 
data as messages on Kafka using a common topic, and the Spark Streaming 
subscribed to receive the message streams. Since the data stream originates from 
the SDN controller, it must undergo several preprocessing steps before entering 
the ML model. 

The data streams may contain irrelevant or redundant information that could 
negatively impact the ML model’s performance. Preprocessing involves feature 
selection, data cleaning, and normalization to prepare the data for analysis. Once 
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the data has been processed, it can be fed into the ML model for processing and 

analysis. Spark Streaming conducts real-time data cleaning and preprocessing to 

generate the necessary information for the ML model [29]. The model with the 

best accuracy and training time performance is selected for the deployment stage. 

Once the model has been deployed, it is essential to monitor its performance and 

make adjustments as needed.  

5 Results and Discussion 

To evaluate the performance of the ML workflow, the “LR-HR DDoS 2024” 

dataset is processed through the multiple stages that constitute the suggested 

workflow. The specifics and results of each stage in the workflow are illustrated 

as follows. 

A Data Ingestion 

The “LR-HR DDoS 2024” dataset from Kaggle platform [30] is utilized to 

assess the performance and effectiveness of the ML workflow. The dataset 

consists of 24 features with 113,407 packets collected throughout the simulation, 

including 42,899 normal packets and 70,508 malicious packets. Normal packets 

are labelled as 0 while malicious packets are labelled as 1.  

B EDA 

The EDA process is performed in two steps: 

1. Dataset Exploration: the dataset exploration process reveals that all 

features are numerical. According to the dataset schema, all features are 

nullable, meaning they can contain missing values.  

2. Dataset Statistical Description: This process gives a comprehensive 

overview of each feature in the dataset, including the count, mean, 

standard deviation, and minimum and maximum values.  

As part of the EDA process, the class distribution is demonstrated in Fig. 5, 

for a total of 113,407 records.  

C Data cleaning 

This step is skipped in this case, since removing duplicated records will 

reduce the malicious records to 987 compared to 42,890 normal records, leading 

to unbalanced dataset.  

D Data segregation 

After completing the EDA process, the processed dataset is divided 

randomly into two subsets, 70% for training and 30% for testing. The two subsets 

have different purposes. The training dataset is further split into five folds for 

cross validation, while the testing dataset is used to evaluate the model’s 
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performance on unseen data. The class distribution for the training and testing 
datasets is demonstrated in Fig. 6. 

 
Fig. 5 – Class Distribution for the LR-HR DDoS 2024 dataset. 

 

 
Fig. 6 – Class Distribution for the training and testing datasets. 

 

E Machine learning pipeline training 
Each ML pipeline (DT, RF, LR) is trained using the training data to produce 

a ML model. Therefore, three ML models are produced: DT, RF, and LR. A brief 
description of each stage of the ML pipeline with the adopted dataset is as 
follows: 
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1. Imputer: At this stage of the ML pipeline, missing values in each feature 

are filled with the mean value of that particular feature. Even though the 

dataset used has no missing values, incorporating an imputer in the 

preprocessing step enhances the robustness of the ML pipeline, ensuring 

it can effectively handle missing data in future datasets. 

2. Vector Assembler: At this stage, features are merged into a single vector 

column, serving as input for the feature selection process. The vector is 

dense, as its features are primarily populated with non-zero values. The 

vector length is 24, corresponding to the number of features included in 

the vector.  

3. Feature Selection: As mentioned earlier, the variance threshold selector 

is applied for feature selection with a threshold set to 0.6. This means 

features with a variance less than or equal to 0.6 are removed. These 

features exhibit low variability or a limited range of values, providing 

minimal information for analysis or predictive modeling. As a result, the 

vector length is reduced from 24 to 16, with the following features 

removed, Fwd PSH Flags, Bwd PSH Flags, Fwd URG Flags, Bwd URG 

Flags, FIN Flag Cnt, SYN Flag Cnt, RST Flag Cnt, and Init Fwd Win 

Byts.  

4. Standard Scaler: This stage normalizes each selected feature with a unit 

standard deviation and zero mean.  

5. Machine Learning Algorithm: As mentioned earlier, three machine 

learning models are employed in this step: Decision Tree (DT), Random 

Forest (RF), and Logistic Regression (LR). The DT algorithm is chosen 

for its interpretability and its ability to handle non-linear relationships 

effectively. The RF algorithm is included to enhance accuracy and 

mitigate overfitting. Finally, the LR algorithm is selected due to its 

simplicity and its effectiveness in handling linear problems. For cross-

validation, the dataset is split into five folds. The hyperparameters for the 

DT, RF and LR are set according to Table 1. 

Table 1 

Hyperparameter tuning for the DT, RF, and LR algorithms. 

ML Algorithm Parameters 

DT 
maxDepth: 5, 8, 10 

maxBins: 16, 32 

RF 
numTrees: 100, 200 

maxDepth: 5, 8 

LR 
regParam: 0.01, 0.1, 0.5 

elasticNetParam: 0.0, 0.5, 1.0 
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F Machine learning models evaluation 
After building the ML models, they are evaluated to select the best candidate 

in terms of four metrics: accuracy, recall, precision and F1 score. Accuracy is 
calculated according to the following equation [31]: 

 Accuracy .

True Positives   True Negatives

All Samples
 

The recall ratio is computed as follows: 

 Recall .


True Positives
True Positives   False Negatives

 

The precision ratio condenses the model performance in predicting the 
positive classes. It is calculated as follows: 

 Precision .


True Positives
True Positives   False Positives

 

F1-score is computed according to the following equation: 

 F1- score 2 .
 


Precision    Recall
Precision    Recall

 

The best model in terms of the aforementioned metrices is used in the 
deployment stage. In this work, Databricks on AWS is used as the experimental 
environment. With this platform, it becomes possible to handle all data storage 
and management needs on a single, accessible platform that integrates data 
warehouses and data lakes. This unified lakehouse approach streamlines analytics 
and AI workloads. The cluster consists of three nodes: one driver and two 
executors. Each node is an Amazon EC2 i3.4xlarge machine, as seen in Fig. 7. 

 
Fig. 7 – Experimental environment using Databricks on AWS. 
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Table 2 shows the overall statistics and training time for the three ML 

pipelines. DT pipeline demonstrates superior performance in terms of accuracy, 

F1 score, recall, precision and training time compared to the other candidates. 

Therefore, the DT model is the best candidate to be used in the deployment stage. 

Table 2 

Evaluation metrics for the DT, RF, and LR ML pipelines within the ML workflow. 

 

A part of the evaluation process is to compare the proposed work with the 

state-of-the-art as shown in Table 3. 

Table 3 

Comparison among the proposed system and the state of the art work. 

Ref. DL/ML Model  Dataset 
Distributed 

Framework 

[5] RNN, LSTM, CNN ISCX 2012 dataset - 

[6] XGBoost KDD Cup 1999 - 

[7] Advanced SVM Custom dataset - 

[8] DT, RF, LR, MLP Custom dataset - 

[9] CNN, LSTM ROAD dataset - 

The proposed 

model  
DT, RF, LR LR-HR DDoS 2024 Spark 

7 Conclusion 

This work demonstrates the practicality and effectiveness of incorporating 

Spark into SDN environments, providing a foundation for enhanced traffic 

analysis and real-time decision-making processes. Using big data techniques, 

such as Spark, in SDN networks has exhibited significant advantages, including 

the architectural design of ML pipelines and the construction of ML models. This 

research has successfully designed and implemented three ML pipelines to be 

deployed in the suggested ML workflow. Each pipeline is used for building a 

specific ML model. As a result, the time dedicated to planning and setting up the 

ML workflow is eliminated, fostering efficiency in ML model development. 

The constructed pipelines have been employed to build three ML models for 

detecting DDoS attacks in SDN networks. By leveraging Spark and its modules, 

ML 

Pipeline 
Accuracy F1 Recall Precision 

Training 

time 

DT 0.9970397 0.996867 0.99703974 0.99702276 4 min 33s 

RF 0.996686 0.996188 0.9966862 0.99634872 5 min 41s 

LR 0.9803287 0.974007 0.9803287 0.97081757 7 min 47s 
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the time required for model construction has been significantly reduced. The 

distributed processing capabilities of Spark, running across a cluster, enable the 

parallelization of the complete workflow.  

Future work will focus on enhancing the ML pipelines’ architecture, 

capabilities, and workflow. This could involve incorporating more advanced 

feature engineering techniques, exploring diverse ML algorithms or ensembles, 

and optimizing the pipeline’s performance for specific network scenarios, such 

as anomaly detection, predictive maintenance, network optimization, or other 

relevant applications.  In addition, future work will focus on simulating the 

method within an actual SDN environment. 

8 Acknowledgments 

The authors would like to thank the Editor-in-Chief and anonymous referees 

for their suggestions and helpful comments that have improved the paper's quality 

and clarity. 

9 References 

[1] M. Hussain, N. Shah, R. Amin, S. S. Alshamrani, A. Alotaibi, S. M. Raza: Software-Defined 

Networking: Categories, Analysis, and Future Directions, Sensors, Vol. 22, No. 15, August 

2022, p. 5551. 

[2] S. C. Narayanan, V. Varghese: A Proactive Controller Failure Recovery Mechanism in SD-

WAN with Multiple Controllers, Serbian Journal of Electrical Engineering, Vol. 21, No. 2, 

June 2024, pp. 235 − 250. 

[3] C. Urrea, D. Benítez: Software-Defined Networking Solutions, Architecture and Controllers 

for the Industrial Internet of Things: A Review, Sensors, Vol. 21, No. 19, October 2021, p. 6585. 

[4] J. Wang, L. Wang: SDN-Defend: A Lightweight Online Attack Detection and Mitigation 

System for DDoS Attacks in SDN, Sensors, Vol. 22, No. 21, November 2022, p. 8287. 

[5] C. Li, Y. Wu, X. Yuan, Z. Sun, W. Wang, X. Li, L. Gong: Detection and Defense of DDoS 

Attack-Based on Deep Learning in OpenFlow-Based SDN, International Journal of 

Communication Systems, Vol. 31, No. 5, March 2018, p. e3497. 

[6] Z. Chen, F. Jiang, Y. Cheng, X. Gu, W. Liu, J. Peng: XGBoost Classifier for DDoS Attack 

Detection and Analysis in SDN-Based Cloud, Proceedings of the IEEE International 

Conference on Big Data and Smart Computing (BigComp), Shanghai, China, January 2018, 

pp. 251 − 256. 

[7] M. Myint Oo, S. Kamolphiwong, T. Kamolphiwong, S. Vasupongayya: Advanced Support 

Vector Machine- (ASVM-) Based Detection for Distributed Denial of Service (DDoS) Attack 

on Software Defined Networking (SDN), Journal of Computer Networks and 

Communications, Vol. 2019, January 2019, p. 8012568. 

[8] R. Swami, M. Dave, V. Ranga: Detection and Analysis of TCP-SYN DDoS Attack in 

Software-Defined Networking, Wireless Personal Communications, Vol. 118, No. 4, June 

2021, pp. 2295 − 2317. 

[9] J. Singh, S. Behal: Detection and Mitigation of DDoS Attacks in SDN: A Comprehensive 

Review, Research Challenges, and Future Directions, Computer Science Review, Vol. 37, 

August 2020, p. 100279. 



S.S. Samaan, H.A. Jeiad 

198 

[10] A. Posoldova: Machine Learning Pipelines: From Research to Production, IEEE Potentials, 

Vol. 39, No. 6, November 2020, pp. 38 − 42. 

[11] E. Haihong, K. Zhou, M. Song: Spark-Based Machine Learning Pipeline Construction 

Method, Proceedings of the International Conference on Machine Learning and Data 

Engineering (iCMLDE), Taipei, Taiwan, December 2019, pp. 1 − 6. 

[12] M. Mirkov, A. Gavrovska: Tumor Detection Using Brain MRI and Low-Dimension Co-

Occurrence Feature Approach, Serbian Journal of Electrical Engineering, Vol. 19, No. 3, 

October 2022, pp. 273 − 289. 

[13] O. Azeroual, A. Nikiforova: Apache Spark and MLlib-Based Intrusion Detection System or 

How the Big Data Technologies Can Secure the Data, Information, Vol. 13, No. 2, February 

2022, p. 58. 

[14] S. S. Samaan, H. A. Jeiad: Architecting a Machine Learning Pipeline for Online Traffic 

Classification in Software Defined Networking Using Spark, IAES International Journal of 

Artificial Intelligence (IJ-AI), Vol. 12, No. 2, June 2023, pp. 861 − 873. 

[15] A. I. Kawoosa, D. Prashar, M. Faheem, N. Jha, A. A. Khan: Using Machine Learning 

Ensemble Method for Detection of Energy Theft in Smart Meters, IET Generation, 

Transmission & Distribution, Vol. 17, No. 21, November 2023, pp. 4794 − 4809. 

[16] M. Gupta, B. Gupta: A New Scalable Approach for Missing Value Imputation in High-

Throughput Microarray Data on Apache Spark, International Journal of Data Mining and 

Bioinformatics, Vol. 23, No. 1, February 2020, pp. 79 − 100. 

[17] S. Bagui, M. Walauskis, R. DeRush, H. Praviset, S. Boucugnani: Spark Configurations to 

Optimize Decision Tree Classification on UNSW-NB15, Big Data and Cognitive Computing, 

Vol. 6, No. 2, June 2022, p. 38. 

[18] R. Dhanya, I. R. Paul, S. S. Akula, M. Sivakumar, J. J. Nair: F-Test Feature Selection in 

Stacking Ensemble Model for Breast Cancer Prediction, Procedia Computer Science, Vol. 

171, 2020, pp. 1561 − 1570. 

[19] H. Ahmed, E. M. G. Younis, A. A. Ali: Predicting Diabetes Using Distributed Machine 

Learning based on Apache Spark, Proceedings of the International Conference on Innovative 

Trends in Communication and Computer Engineering (ITCE), Aswan, Egypt, February 2020, 

pp. 44 − 49. 

[20] G. Kumar, H. Alqahtani: Machine Learning Techniques for Intrusion Detection Systems in 

SDN-Recent Advances, Challenges and Future Directions, CMES - Computer Modeling in 

Engineering and Sciences, Vol. 134, No. 1, August 2022, pp. 89 − 119. 

[21] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, C. Wang, Y. Liu: A Survey of Machine Learning 

Techniques Applied to Software Defined Networking (SDN): Research Issues and 

Challenges, IEEE Communications Surveys & Tutorials, Vol. 21, No. 1, Firstquarter 2019, 

pp. 393 − 430. 

[22] N. F. Idris, M. A. Ismail, M. S. Mohamad, S. Kasim, Z. Zakaria, T. Sutikno: Breast Cancer 

Disease Classification Using Fuzzy-ID3 Algorithm based on Association Function, IAES 

International Journal of Artificial Intelligence, Vol. 11, No. 2, June 2022, pp. 448 − 461. 

[23] R. M. Aziz, A. Hussain, P. Sharma, P. Kumar: Machine Learning-Based Soft Computing 

Regression Analysis Approach for Crime Data Prediction, Karbala International Journal of 

Modern Science, Vol. 8, No. 1, January 2022, p. 1. 

[24] Z. Ali Mohammed, M. N. Abdullah, I. H. Al-Hussaini: Predicting Incident Duration Based on 

Machine Learning Methods, Iraqi Journal of Computer, Communication, Control and 

Systems Engineering, Vol. 21, No. 1, March 2021, pp. 1 − 15. 



Developing Tunable Machine Learning Workflow for Traffic Analysis in SDN 

199 

[25] M. E. Maros, D. Capper, D. T. W. Jones, V. Hovestadt, A. von Deimling, S. M. Pfister, A. 

Benner, M. Zucknick, M. Sill: Machine Learning Workflows to Estimate Class Probabilities 

for Precision Cancer Diagnostics on DNA Methylation Microarray Data, Nature Protocols, 

Vol. 15, No. 2, February 2020, pp. 479 − 512. 

[26] H. Kamel, M. Z. Abdullah: Distributed Denial of Service Attacks Detection for Software 

Defined Networks Based on Evolutionary Decision Tree Model, Bulletin of Electrical 

Engineering and Informatics, Vol. 11, No. 4, August 2022, pp. 2322 − 2330. 

[27] H. Alqahtani, G. Kumar: Deep Learning-Based Intrusion Detection System for In-Vehicle 

Networks with Knowledge Graph and Statistical Methods, International Journal of Machine 

Learning and Cybernetics, Vol. 16, No. 5-6, June 2025, pp. 3539 − 3555. 

[28] B. Zhou, J. Li, X. Wang, Y. Gu, L. Xu, Y. Hu, L. Zhu: Online Internet Traffic Monitoring 

System Using Spark Streaming, Big Data Mining and Analytics, Vol. 1, No. 1, March 2018, 

pp. 47 − 56. 

[29] B. Zhou, J. Li, J. Wu, S. Guo, Y. Gu, Z. Li: Machine-Learning-Based Online Distributed Denial-

of-Service Attack Detection Using Spark Streaming, Proceedings of the IEEE International 

Conference on Communications (ICC), Kansas City, USA, May 2018, pp. 1 − 6. 

[30] A. Ahmed: LR-HR DDoS 2024 Dataset for SDN-Based Networks, Available at: 

https://www.kaggle.com/datasets/abdussalamahmed/lr-hr-ddos-2024-dataset-for-sdn-based-

networks, [Accessed: 21-Dec-2024].  

[31] S. S. Samaan, H. A. Jeiad: Feature-Based Real-Time Distributed Denial of Service Detection 

in SDN Using Machine Learning and Spark, Bulletin of Electrical Engineering and 

Informatics, Vol. 12, No. 4, August 2023, pp. 2302 − 2312. 




