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Abstract: This work aims to analyze the impacts of cache configurations on miss 

rates of big data benchmarks with varying level 1 instruction (L1I) and data (L1D) 

caches using the gem5 simulator. The cache miss rate of nine big data applications 

from four benchmark suits is analyzed with different cache configurations, such 

as increasing the cache size, varying the associativity, and altering the line size. 

The gem5 provides a versatile platform for conducting detailed experiments. The 

study sheds light on the relationship between cache and big data workloads, thus 

offering insights into optimizing cache configurations’ effect on miss rates for 

improved performance. 

Keywords: Cache configurations, Miss rate analysis, L1 instruction and data 
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1 Introduction 

The performance of embedded processors is increased tremendously, 

prominent to the memory system needing the same speed. Unfortunately, the 

processor and the memory subsystem do not have the same rate, which creates a 

speed gap between the processor and the memory [1]. This gap will grow as 

CMOS technology reaches primary limits [2]. The cache is the fastest memory in 

the memory hierarchy. It drastically improves the memory access time from 60ns 

of DRAM to 10ns of L1 cache. However, the on-chip cache occupies a significant 

portion of the processor dies. It causes the cache to consume considerable 

processor power, i.e., 20% to 40% [3, 4]. 

Furthermore, an application’s performance depends on the cache. So, the 

cache is an excellent candidate to be considered [4]. In today's world, almost all 

fields use comparatively large data, i.e., servers, social media [5], health [6, 7], 

business [7], IoT, and many more. With the wide use of big data applications, it 

is important to consider the cache for analysis. In tuning, a cache system designer 

has many parameters, including the cache size, associativity, and line size. Thus, 
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the designer must choose a suitable cache per system application to achieve a 

shorter time-to-market with a reasonably reduced design cost and effort [8]. 

Cache parameters influence the processor’s performance to a considerable 

degree. Analyzing performance in terms of miss rate using various cache 

parameters is essential. Cache size, its associativity, and line size influence miss 

rate, so the processor is also affected. We verify these statements by running big 

data benchmark applications on the gem5. Benchmark suites facilitate designers 

to evaluate and compare designs. It is a set and representative of the applications 

program of interest. A benchmark application that is run on a simulator can mimic 

the characteristics of a particular real application system. Work carried out by [9] 

identified the characteristics of big data applications and their potential as big 

data applications. These applications are used in this work for simulation and 

analysis. 

Moreover, the level 1 cache (on-chip cache) size is not kept too large. Thus, 

the processor can access information quickly because it needs to search a small 

area. The small storage space available can lead to an increased miss rate. 

Therefore, it is important to consider level 1 cache for an analysis. Furthermore, 

the importance of considering the L1I and L1D cache on the CPU performance 

is discussed in [10] in detail. 

Thus, this work aims to analyze the L1I and L1D cache miss rate of nine big 

data applications from four benchmark suits using different cache configurations, 

such as increasing the cache size, varying the associativity, and altering the line 

size using the gem5. The cache configuration analysis for big data benchmarks 

includes a profound understanding of the different characteristics of these 

applications.  

The findings of this study contribute to understanding cache impacts for big 

data applications. 

Hence, it is summarized as: 

– It examines cache configuration’s impact on the miss rate for various big 

data benchmarks with varying L1I and L1D cache size, associativity, and 

line size. 

– It shows the believability of the thumb rule [11] - the miss rate of the cache 

is directly mapped, and the cache size of N is equal to the miss rate of 

associativity is 2, and a cache size of N/2. 

2 Big Data Benchmark 

In embedded processor research, such as processor architecture and design, 

the designer often studies the response of embedded systems in detail. Thus, 
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designers need to examine how their new designs affect system performance and 

behavior at the early design time by running a benchmark application on a 

simulator that can mimic the characteristics of a particular real application. 

Scientific investigations in computer architecture research can be performed 

using the standard benchmarking technique. Standard big data benchmark 

applications are representative of text search, graph mining, machine learning, 

and statistics and mathematics categories and use different types of datasets like 

text, graph, image, and machine learning [9]. Benchmark applications and 

datasets are considered diverse to analyze cache miss rate. It covers the maximum 

possible domains of big data. Work carried out by [9] identified characteristics of 

big data applications, which are chosen for the simulation and analysis. These 

applications have been picked up through well-known C/C++-based standard 

benchmark suites, including Rodinia [12], Graphbig [13], Phoenix [14], and 

CortexSuite [15]. These benchmark applications may not be comprehensive, but 

these are wisely selected to be appropriately representative of our study. 

LR (Linear Regression) and SM (String Match) are the text-processing 

applications. These applications process large text files as input. An LR can be 

categorized as a statistical and mathematical domain, and it creates the summary 

measurements of points to give the linear approximation of all the points. An SM 

can be classified as a text search domain, and it scrolls through a list of keys to 

determine if any of them occur in a list of encrypted words of text input files. 

Applications like BFS (Breadth-First Search), CC (Connected Component), DFS 

(Depth-First Search), and PR (Page Rank) are classified as graph processing 

domains and work on large input graph datasets having a list of edges and 

vertices. A BFS is a prevalent and widely used graph-processing application [16]. 

It generates the graph by specifying the number of nodes. A CC computes the 

total number of vertices and edges and connected components of the given graph. 

A DFS performs graph traversal operations while the PR assigns a rank to each 

node and measures the graph node's connectivity. A Histogram application 

processes a large image file as input data and falls under the statistical and 

mathematical domain. It gives the frequency of occurrence for an image file's 

RGB (Red, Green, Blue). PCA (Principle Component Analysis) and K-means are 

machine learning domain applications. A PCA extracts features from multivariate 

image datasets and analyses chosen correlations. A K-means works on a dataset 

that contains various numeric features. A detailed explanation of each big data 

benchmark application is specified in Table 1. All big data benchmark 

applications were compiled with the help of a make-file provided with individual 

applications to convert their source code to binary or executable code. 
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Table 1: 

Big data benchmarks with their description. 

Domain 
Application 

name 

Benchmark 

suite 
Description Data type 

Text Search 
SM (String 

Match) 

Phoenix 2.0 

[14] 

Scans a list of keys 

to decide if any of 

them occur in a list 

of encrypted words 

[9] 

A text file 

contains a list of 

encrypted words 

Graph 

Processing 

BFS (Breadth-

First Search) 
Rodinia [12] 

Large graphs 

involving millions of 

vertices. 

Graph generated 

by specifying the 

number of nodes 

CC 

(Connected 

Component) 

GraphBig 

[13] 

Computes a set of 

connected subgraphs 

from the given graph 

Graph represented 

in terms of vertex 

and edge file 

DFS(Depth-

First Search) 

GraphBig 

[13] 

Graph traversal 

operations 

Graph represented 

in terms of vertex 

and edge 

Page rank 
GraphBig 

[13] 

Assign rank to each 

node and measure 

the graph nodes' 

connectivity 

Graph represented 

in terms of vertex 

and edge 

Statistical 

and 

mathematical 

Histogram 
Phoenix 2.0 

[14] 

Computes the RGB 

histogram of an 

image and 

determines the 

frequency of each 

RGB component in a 

set of images 

Image file 

LR(Linear 

Regression) 

Phoenix 2.0 

[14] 

Generates the 

summary 

measurements of 

points to give the 

linear approximation 

of all the points. 

Text file 

Machine 

learning 

PCA 

(Principle 

Component 

Analysis) 

Cortex Suite 

[15] 

Extracts features 

from 

Multivariate dataset. 

Image data in 

numeric form 

K-means Rodinia [12] 

Indicates the data by 

centroids of the sub-

clusters by dividing a 

data cluster into K 

sub-clusters [9]. 

The dataset with 

numeric 

structures. 
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3 Cache Memory 

Recently used instructions and data are stored in small, fast memory [2]. The 
processor first checks to see if the data it needs to process is already in the cache. 
If it is, it operates on this data. Cache configuration is an essential part of 
embedded system design. An oversized cache leads to an extra silicon area and 
more power consumption. Further, the undersized cache leads to degraded 
performance.  

Moreover, different applications need different cache configurations [8], i.e., 
some require a small cache, while others need a large size. Some are related to 
associativity, while others are not. Some require a larger line size, while others 
require a smaller one. Therefore, the best parameters will vary by type of 
application. Thus, the system designer must carefully choose cache configuration. 
A careful analysis is essential at this level to make reliable architectural decisions. 

The cache configuration and its effect are explained below. 

The cache design constraints are cache size, associativity, line size, 
replacement policy (FIFO, LRU, and Random), writing policy (write back and 
write through), cache type, and cache level. The possible combination of design 
parameters is called the design point. The design points are considered as the 
design space altogether. To find the best design configuration from the obtainable 
design choices, a compelling design space exploration (DSE) process is essential 
[8]. The cache configuration strongly affects the performance. Therefore, 
analyzing the cache is important in choosing the best cache through the DSE 
technique. 

Cache size is measured capacity in bytes. Generally, size is in powers of 2, 
4, 8, 16, etc., and the unit is KB up to MB. The more significant cache can store 
more data closer to the processor. Therefore, different processors have caches of 
different sizes. Associativity means how data from the main memory could be 
mapped onto the cache using different mapping techniques [12].There are three 
types of it: 1) Direct mapped, 2) Full associative, and 3) N-way set associative 
[18]. In the direct map (one-way), a single data location of the main memory is 
mapped with a single cache location. In full associative, any data location of the 
main memory is mapped with any place of cache. In the n-way set associative, 
the cache is designed using the n-set. Line size represents the amount of data read 
or written in each cache access [8]. A line refers to data transferred between the 
cache and main memory. A larger line size holds more words in the cache. The 
commonly used line size is 16 to 256 bytes. The application can influence the line 
size’s usefulness that the system designer chooses. Line size is also called block 
size. There are two types of cache. 1) Instruction and data cache 2) Unified and 
split cache. An instruction cache is known as an I-cache, which stores instructions 
only. The data cache is known as D-cache, which stores data only. A unified 
cache stores instructions and data, while a split cache consists of independent 
units – an I-cache and a D-cache [18]. The cache is designed with different levels. 
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These are called Level 1(L1), Level 2(L2), and Level (L3). L1 cache is designed 
in the same chip area. L1 is also called on-chip memory. Due to on-chip L1, the 
processor tends to have less access to the external bus. The L2 and L3 are off-
chip, bigger, slower, and less expensive than the L1 cache. The cache is explained 
in detail by [11, 19]. 

Each cache configuration parameter affects its performance parameters: hit 
rate, miss rate, power consumption, access time, and hardware complexity to a 
varying degree. An analysis of these parameters helps assess the impact of cache 
on system performance. The processor checks the cache first to see if it needs any 
information, i.e., data or instruction. It is called a cache hit if information is 
accessible in the cache. It is called a cache miss if the information is unavailable 
in the cache. If a miss occurs, the missed line is fetched from the main memory, 
which is time-consuming. The processor uses a fetched line and saves it to the 
cache [18]. Three types of misses exist: 1) compulsory miss occurs in the memory 
location accessed the first time, 2) capacity misses occur due to small space, and 
3) conflict misses occur due to insufficient space when two lines are mapped on 
the exact location. The miss rate is defined as how often the cache's desired 
memory location is absent. A larger cache size decreases the miss rate. 

Furthermore, hardware complexity, cost, conflict miss, and power 
consumption will increase if the cache size is more prominent. It slows down 
access time. An associativity is also essential in the effect of cache performance 
parameters. Direct mapped cache increases the miss rate. Further, it decreases the 
hit rate and cost. However, it supports the fastest access time [8]. The set 
associative cache decreases the miss rate. Intended for a specific cache size, 
associativity can lessen the miss rate [20], i.e., Let's intend the cache size is 8MB, 
and associativity is changed from one way to two ways, then this associativity 
cache retains almost 44% of the cache misses [21]. Larger caches with a higher 
set associativity have lower miss rates but longer access times. A full associative 
cache supports the lowest miss rate and conflict misses, but its internal design is 
very complex, and it consumes the highest power. Therefore, the correct 
associative value for each cache is important; hence, simulation is carried out 
using different associativity in this work. Line size is essential when designing a 
processor’s cache. The designer cannot keep a line size too small or too large as 
both have pros and cons; a larger line size decreases the miss rate and compulsory 
misses. Further, it increases conflict misses. Moreover, it supports fast access 
time. 

Locality of reference is a working principle of cache. It supports temporal 
locality, which means the same data is requested again very soon, and spatial 
locality means location is referenced, and its data is brought into the cache; its 
nearby location’s data is also obtainable in the future. 

An analysis of cache configuration helps understand its impact on system 
performance, identify possible limitations, and improve overall system 
efficiency. 
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4 About the Gem5 Simulator 

The gem5 [22, 23] is a popular open-source simulator for the computer 

architecture research community. The gem5 is well-maintained by developers 

and broadly considered in academia, research, and industry. It combines the M5 

simulator [24] and GEMS(General Execution Driven Multiprocessor Simulator) 

known as gem5. The gem5 is written primarily in C++ and Python. It can run 

interactive benchmarks. The gem5 allows the construction of several aspects of 

the simulated system, including CPU models, memory hierarchy, and cache 

configurations. It supports great flexibility in configuring various system 

parameters. The gem5 aids many instruction set architectures (ISA), i.e., ARM, 

X86, MIPS, POWER, RISC-V, ALPHA, and SPARC. The gem5 includes various 

CPU types, i.e., Atomic-Simple, Timing-Simple, Out-of-Order (O3), In-Order, 

and KVM. The simulator provides two cache memory models, i.e., classic cache 

and ruby cache. It supports full system (FS) and syscall emulation (SE) simulation 

mode. In the FS mode, the entire operating system is simulated. In contrast, in SE 

mode simulation, the gem5 executes user-mode binaries without executing the 

kernel-mode system calls of a real operating system [23]. 

After simulation, as an output, three files are produced for each run in the 

m5out folder by the gem5, named config.ini, config.json, and stats.txt. The 

generated output files show many parameters. gem5 version 22.1 is used in this 

work, which was released in the year 2022. X86 ISA, Timing-Simple CPU, SE 

simulation mode, and classic cache memory model from the gem5 are used to 

carry out this work. The simulation result is analyzed using a stats.txt output file, 

which provides valuable statistics. Comparison is done on various cache 

parameters like cache size, associativity, and line size of L1I and L1D for the 

mentioned benchmark applications with its input data to analyze how changes in 

them might affect the overall cache performance in terms of miss rate. 

Some other computer architecture simulators are SimOS, Simics, 

MARSSx8, Simplescalar, and many more are explained in detail by [25]. 

5 Related Work 

Prior efforts have explored cache configuration, with some studies focusing 

on specific cache parameters, simulation tools, or different benchmark applications. 

The authors [26] investigated the L1I and L1D cache line utilization of 

mobile workloads for false sharing using the gem5. They found an effect of false 

sharing on the miss rate by varying cache line size from 16 to 256 bytes. The 

authors [27] characterized SPEC CPU2017 benchmark applications by 

examining cache, instruction mix, and execution time. They use hardware 

performance counters on a real system. They found L1, L2, and L3 cache miss 

rates, which are essential for the application’s overall performance. As per their 
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experiment, L3 has a lower miss rate than L2 for CPU2017 applications. The 

authors [28] estimated a cache hit rate via their proposed model for embedded 

systems. They used three mibench benchmarks to estimate their model. The 

authors [29] evaluate the performance of twenty applications from the SPEC 

CPU2006 benchmark suite in chip multiprocessors by taking IPC and CPI as 

matric with varying cache sizes. The authors [10] explore the variations in 

performance affected by altering the L1I and L1D cache size. They run a 

FreqMine application from the PARSEC suite using gem5. They have chosen 

various parameters to analyze, i.e., miss rate, instruction rate, memory latency, 

and bus traffic. The authors [30] analyzed the STT-RAM cache energy and 

latency of wearable workloads applications of cache configurations such as 

increasing the cache size from 4 to 32 KB, varying associativity from 2 to 16-

way, and altering line size from 16 to 64 bytes using the gem5. The authors [31] 

analyzed the miss rate and IPC of mibench benchmark applications using the 

gem5 by considering L1 cache size and latency. They concluded that the system 

performance improved as the latency decreased and the L1 cache size increased. 

The authors [32] analyzed memory bandwidth, system bus output, and cache miss 

rate of SPLASH-2 benchmarks using gem5 on ARM and ALPHA ISA. They 

observed that memory bandwidth, system bus output, and miss rate decreased as 

cache size increased. The authors [33] run Bernstein’s attacks, which are 

cryptographic operations on the gem5, to analyze cache configurations for 

performance measurement. The authors [34] identified the L1D cache sensitivity 

of three applications, libquantum, h264ref, and hmmer, from the SPEC CPU 2006 

benchmark for big data benchmarking. The authors [35] analyzed high-

performance graph algorithms. They experimented using hardware performance 

counters on an Ivy Bridge Server. Representative graph applications are Breadth-

First Search, Single-Source Shortest Paths, PageRank, Connected Components, 

and Betweenness Centrality. They concluded by saying that there is no perfect 

solution for performance tests of graph algorithms. 

An analysis of graph processing is important for big data applications, [36] 

authors analyzed graph processing applications to discover the multi-core and 

cache bottleneck. They used SNIPER and CACTI tools. Graph applications are 

Breadth-First Search, Single-Source Shortest Paths, PageRank, Connected 

Components, and Betweenness Centrality from the GAP benchmark used in their 

work. They concluded that the L2 cache contributes less performance while the 

L3 cache is sensitive towards higher performance for graph applications. The 

authors [37] characterized big data applications on big-Xeon and little-Atom-

based Core server architectures. They measured power and performance at the 

system and architecture level. They revealed the effect of application type, data 

size, and performance limits on selecting servers and handling big data. Big data 

applications include graph processing, data mining, data analysis platforms, and 

pattern searching. They provide cache-related insight for both servers. A small 
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two-level data cache is adequate for a little core server, and improvement is 

needed for instruction cache pipeline design for big data processing. Big data 

applications affect L1 cache miss rate and branch predictor accuracy in big and 

little core servers. They considered seven cache parameters: L1 cache size and its 

associativity, L2 cache size and its associativity, cache line size, replacement 

policy, and cache clusivity. The authors [16] estimated the performance of a mix 

of graph processing- GAP benchmark, scientific-XSBench benchmark, and 

industrial- Qualcomm application workloads along with the SPEC CPU 2006 and 

SPEC CPU 2017 workloads. They experimented using ChampSim with last-level 

cache replacement policies. 

The prior studied work is related to traditional benchmarks, gem5, and big 

data applications analysis for cache configuration, but a limited focus on new-

fangled effort going on big data applications. Most of the previous research has 

explored cache analysis by considering SPEC CPU and mibench benchmark 

workloads. In this work, considered applications are representative of text search, 

graph mining, machine learning, and statistics and mathematics categories and 

use different types of datasets like text, graph, image, and machine learning. This 

study aims to connect this gap and contribute insights specific to this area by 

examining cache configuration’s impact on the miss rate of various big data 

benchmarks with varying L1I and L1D cache size, associativity, and line size. 

6 Methodology and Simulation Process 

This section details the methodology and simulation process used to 

experiment. We used gem5 with different cache configurations. The cache design 

has a substantial effect on application performance. Cache sizes from 1KB to 

1024KB, associativity from 1 to 16 ways, and line sizes from 8 to 64 bytes are 

considered for L1I and L1D caches. The default replacement policy on gem5 is 

LRU for the cache configuration. Each simulation output was usually redirected 

to a static.txt file as an output of the gem5. 

First, all the prerequisites for gem5 are installed on the Ubuntu host machine. 

Then, gem5 was cloned and built. The gem5 was built for X86 architectures using 

the build command. Then, we collected, cloned, and learned various big data 

applications. All big data applications were compiled using the make file 

provided with each application. The make file uses GCC and G++ to convert the 

source code of an application written in C and C++ into binary or executable code 

on the host system Ubuntu version 20.04. Generated binary or executable code 

with its input dataset file was simulated on the gem5. A compiled benchmark 

application binary code must be passed to gem5 using command-line options for 

the simulation on gem5. The gem5 can read the configuration script from the 

command line. Therefore, the configuration script was prepared for the gem5. 
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The prepared configuration script includes gem5 built option that is X86 ISA, SE 

mode, CPU type, i.e., Timing-Simple, benchmark application binary code with 

its input file, and cache-related parameters like L1I and L1D cache size, its 

associativity, and line size. 

The cache parameters are the cache size, associativity, and line size for the 

gem5 commands. Each benchmark application program was run using different 

cache parameters as below: 1) Cache size: 1KB to 1024KB, 2) Associativity: 1-

way to 16-way, 3) Line size: 8 to 64 bytes, and 4) Type: instruction and data level 

1. All sizes are the power of two. Each benchmark application was simulated 

using gem5 with varying L1I and L1D cache size, associativity, and line size. 

Upon the completion of each simulation, the stats.txt file is considered to collect 

the miss rate and plot the graph for analysis. As mentioned before, standard big 

data applications are representative of text search, graph processing, machine 

learning, and statistics and mathematics categories[9] and use different types of 

datasets like text, graph, image, and machine learning. These applications are 

from well-known C/C++-based standard benchmark suites including Rodinia 

[12], Graphbig [13], Phoenix [14], and CortexSuite [15]. 

Simulation is done on a host machine with i5-4300M CPU, 8.00 GB RAM, 

and a 64-bit Ubuntu 20.04 (Linux) operating system. 

7 Simulation Result and Observation 

This section presents experiment results and observations derived from the 

analysis of miss rates of big data applications, which are SM, BFS, CC, DFS, PR, 

Histogram, LR, PCA, and K-means. The experimental analysis is carried out with 

various cache configurations like the cache size, associativity, and line size of 

L1I and L1D using the gem5. 

Fig. 1 shows the outcome of the miss rate by varying L1I cache size from 

1KB to 1024KB with associativity one and line size 64 bytes for different big 

data applications. The highest and lowest L1I miss rate is reported for CC and 

histogram application, respectively, for 1KB L1I size. If the program code is large 

and the cache size is small, the cache cannot store the entire program code, 

leading to a greater miss rate in many modern interactive applications. Thus, it is 

shown in Fig. 1 that CC, DFS, PR, and BFS significantly use the L1I cache of 

more than 64KB. Here, it is observed that those applications that have higher 

program code sizes face a high miss rate for small L1I sizes, i.e., CC, DFS, PR, 

BFS, and K-means compared to the applications that have smaller program code 

sizes, i.e., histogram, SM, LR, and PCA. Higher than 16KB L1I size provides a 

constant miss-rate for applications like histogram, LR, SM, and K-means. The 

miss rate for PCA has decreased from 1KB to 128KB. 
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Fig. 1 − An effect of varying direct-mapped L1I cache size on miss rate. 

 

Fig. 2 reveals the miss rate of the L1D cache when the associativity is one, 

the line size is 64 bytes, and the cache size varies from 1KB to 1024KB for 

different big data applications. 

 

Fig. 2 − An effect of varying direct-L1D cache size on miss rate. 
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Diverse input data sets like graphs, images, and text are considered to carry 

out the simulations. The graph processing applications are BFS, CC, DFS, and 

PR. Histogram and PCA process an image input file. LR and SM are text-

processing applications. As Fig. 2 exhibits, the highest miss rate is stated for BFS. 

BFS is a graph processing application that passes through all vertices in the data 

set. Each iteration will access or modify other vertices in the data. Since these 

other vertices are not certainly consecutive, this creates an irregular access pattern 

that is possibly hard to predict. Therefore, a high L1D miss is made. It is noted 

that increased L1D cache size from 1KB to 1024KB is beneficial as the miss rate 

is decreased for the graph processing applications. The miss rate is reduced from 

1KB to 256KB for L1D size. Larger sizes beyond 256KB only provide minimal 

benefits for image processing applications. For text processing applications, the 

reported miss rate is not much benefited by larger L1D sizes. 

Another observation is the overall miss rate of L1I is lower than L1D of all 

the applications, i.e., with 1KB L1I cache size, the highest miss rate is 0.08 for 

the CC application, and 1KB L1D cache size, the highest miss rate is 0.5 for BFS 

application. The reason is that instruction also leans towards a better locality of 

reference, both spatial and temporal, causing a lower miss rate for the instruction 

cache. Hence, there is a considerable chance to improve the processor’s 

performance for big data applications through a larger L1D cache. 

L1I cache size is 32KB, line size is 64 bytes, and associativity varying from 

1 to 16 is chosen and calculated. The miss rate of big data applications is presented 

in Fig. 3. It is shown here that the direct-mapped cache gives the highest miss rate. 

 

Fig. 3 − An effect of varying L1I cache associativity on miss rate. 
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Higher associativity means more lines in one set, which offers fewer chances 

of data not being available in the cache, thus reducing the miss rate. The higher 

associativity gives better performance, but it increases the cost and cache 

management complexity. As associativity is increased from one to four, the miss 

rate is decreased for applications like BFS, CC, DFS, PR, PCA, and K-means. 

The observation is that most of the applications with caches implemented 

with either two- or four-way associativity give a lower miss rate, as increasing 

the associativity further than this is shown to have less effect on the miss rate. 

Increasing associativity does not give any changes in the change of the miss rate 

for histogram, LR, and SM applications. 

Fig. 4 represents the miss rate achieved from the simulation of an L1D cache 

size of 32KB, line size of 64 bytes, and associativity varying from 1 to 16 for big 

data applications. The miss rate is decreased at associativity four for most of the 

applications. There is no significant benefit in the miss rate achieved for 

associativity eight and sixteen way. 

The rule of thumb for cache says the miss rate of cache is directly mapped, 

and the cache size of N is equal to the miss rate of associativity is two, and a 

cache size of N/2 [11]. This is valid for applications like PCA, PR, and LR. 

 

Fig. 4 − An effect of varying L1D cache associativity on miss rate. 

 

The miss rate of big data applications for the L1I cache size is 32 KB, 

associativity is one, and varying line size from 8 to 64 bytes is given in Fig. 5. 

The highest and lowest miss rate is reported for PR and SM, respectively. It is 

noted that there is no significant effect on the miss rate by changing the L1I line 
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size from 16 to 64 bytes for histogram, LR, SM, and K-means applications. The 

miss rate decreased as line size increased from 8 to 64 bytes for applications like 

BFS, CC, DFS, PR, and PCA. 

 
Fig. 5 − An effect of varying direct-mapped L1 cache line size on miss rate. 

 

The simulation result is presented in Fig. 6 for the L1D cache size is 32KB, 

associativity is one, and varying line size from 8 to 64 bytes.  

 

Fig. 6 − An effect of varying direct-mapped L1D cache line size on miss rate. 



An Analysis of Cache Configuration’s Impacts on the Miss Rate of Big Data… 

231 

A larger line size supports spatial locality, which means location is 

referenced, and its data are brought into the cache; its nearby location data are 

also obtainable in the future. Thus, as line size increases, all applications' miss 

rate decreases. Hence, a 64-byte L1D line size is beneficial for achieving a 

reasonable miss rate. 

8 Conclusion 

In this work, we have considered the impact of cache configurations on the 

miss rate of big data benchmarks using gem5. The miss rate is obtained by 

varying parameters such as cache size, associativity, and line size of L1I and L1D 

cache configuration. An analysis of cache parameters is important in choosing 

the best cache, and an application’s performance depends on the cache. From our 

simulations and resulting graphs plotted, it is concluded that the applications face 

a high miss rate for small L1I sizes that have higher program code sizes. The 

cache size increases from 1KB to 128KB, and the miss rate decreases. Therefore, 

keeping the L1I cache size much larger is not always good. An increased L1D 

cache size from 1KB to 1024KB is beneficial as the miss rate is decreased for the 

graph processing applications. The L1D size beyond 256KB only provides 

minimal benefits for image processing applications. The miss rate is not much 

benefited by larger L1D size for text processing applications. The overall miss 

rate of L1I is lower than L1D of all the applications. The higher associativity 

performs better but increases the cost and cache management complexity. The 

rule of thumb for the cache is valid for applications like PCA, PR, and LR. The 

64-byte L1D line size is beneficial for achieving a reasonable miss rate for all the 

applications. This analysis will be helpful for further understanding the effect of 

cache configurations’ impact on the miss rate of big data applications when 

selecting the suitable cache configuration through DSE. Thus helping optimize 

performance for the given application in a fair amount of time. 

This work examines the Level 1(L1) cache for big data applications. In the 

future, different levels of caches can be examined, i.e., Level 2(L2) and Level 

3(L3) caches. 

This study obtained the cache miss rate as a performance parameter from 

simulation results, and an analysis was carried out. The on-chip cache occupies a 

significant portion of the processor dies. It causes, it consumes a considerable 

amount of processor power. Thus, in the future, cache analysis will consider 

power as a performance parameter, vital to studying power-efficient cache 

configuration using gem5. Moreover, other cache performance parameters like 

IPC (instructions per cycle) and execution time can be analyzed for big data 

applications using the gem5 in the future. 
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Our study analyzes cache configurations’ impact on the miss rate of big data 

applications for X86 ISA. Different ISAs from gem5, like ARM, MIPS, ALPHA, 

and RISC-V, can be considered in the future. 
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