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Abstract: As exemplified during the COVID-19 pandemic and in post-operative 

intensive care units, monitoring blood oxygen saturation (SpO2) levels is crucial 

in terms of assessing a patient’s health condition. Due to random movements of 

the subject, a pulse-oximeter-driven photoplethysmographic (PPG) signal 

becomes noisy while recording, with motion artefacts (MAs), which will disturb 

the morphological features, leading to incorrect SpO2 levels. The MA noise may 

contain either low- or high-frequency components, resulting in a scenario with in-

band and out-of-band noise. The reduction of in-band noise with an adaptive filter 

requires a reference signal, and an additional sensor such as an accelerometer is 

normally used in addition to the PPG sensor to capture the MAs. The present work 

focuses on the generation of a reference for inherent noise using a wavelet 

transform (WT), thereby eliminating the need for an external sensor. The 

computed values of the correlation coefficient and magnitude squared coherence 

are used to establish the validity of the generated inherent noise reference. Our 

WT-driven adaptive filtering method reduces MAs, simplifies the correct 

approximation of the SpO2 and heart rate, and also restores the respiratory 

components. The de-noised PPG signals presented here and a corresponding 

numerical study prove the usefulness of the proposed method, which has a worst-

case accuracy of 0.5% in regard to SpO2 estimations. 

Keywords: Wavelet transform, Pulse oximeter, PPG signal, Motion artifact, blood 

oxygen saturation (SpO2), In-band noise, Out-of-band noise, Inherent noise 

reference, LMS adaptive filter. 

1 Introduction 

Pulse-oximeter-driven photoplethysmographic (PPG) signals are used [1− 4] 

to monitor important physical parameters such as blood oxygen saturation 

(SpO2), respiratory information, and heart rate. A PPG sensor acquires red (R) 
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and infra-red (IR) PPG signals. Accurate and reliable estimations of SpO2 levels 

play an important role in monitoring health conditions, as especially apparent 

during the COVID-19 pandemic and in post-operative intensive care units. The 

accurate estimation of these important parameters depends on the quality of 

pulse-oximeter-driven PPG signals. In general, a PPG signal can become 

corrupted with motion artefacts (MAs), resulting in an erroneous estimation of 

SpO2. The spectrum of PPG signals consists of frequencies of 0 to 4 Hz, including 

the ECG synchronised pulse signal (0.8 Hz to 2 Hz), and respiratory information 

(0.2 Hz to 0.33 Hz). MA noise may include an in-band or out-of-band frequency 

component. 

In the literature, many methods have been proposed to reduce MAs in PPG 

signals. One method [5] combined multi-resolution analysis based on a wavelet 

transform (WT) with the Mallat algorithm, and was found to determine the pulse 

amplitude accurately and to detect MAs in the pulse wave. An adaptive comb 

filtering method with an adaptive lattice IIR notch filter technique [6] was also 

proposed to reduce MAs in PPG signals. To improve the performance of PPG 

sensors, a technique based on an LMS adaptive noise canceller [7] was put 

forward to assess the fundamental frequency and generate a synthetic noise signal 

for reference.  

To eliminate the MA noise from PPG signals, a new method based on a 

combination of a constrained independent component analysis algorithm and an 

adaptive filter was used in [8]. Another method [9] that involved cycle-by-cycle 

Fourier series analysis was used for the compression and de-noising of PPG 

signals. A data-driven Hilbert transform based on empirical mode decomposition 

(EMD) was applied to reduce the MAs in PPG signals, with its basic 

decomposing feature as intrinsic mode functions (IMFs) [10]. In addition to this 

method, multi-scale empirical mode decomposition (MS-EMD) can be used with 

wavelet processing and empirical mode decomposition concepts to reduce the 

MAs in PPG signals [11]. 

A method based on a periodic moving average filter [12] was developed in 

which the quasi-periodicity of the PPG signals was exploited to remove MAs. 

The moving average method was not found to remove MAs with large 

amplitudes. An algorithm based on a dual-tree complex WT and morphological 

filtering was also presented for de-noising the PPG signal, and was shown to 

effectively remove high-frequency noise [13]. A comb filter was designed based 

on the estimated period of the PPG signal [14], and was used to filter out MAs 

from band-pass filtered PPG signals. A novel technique [15] was proposed for 

accurately reconstructing motion-corrupted heart rate signals using a PPG sensor 

based on spectral filter algorithm for MA and heart rate reconstruction. An 

approach was presented for determining the heart rate by reducing the MA from 

the PPG signal using singular value decomposition and filtered X-LMS [16]. A 



Wavelet Transform Generated Inherent Noise Reference for Adaptive Filtering… 

253 

new concept was developed in which an artificial neural network (ANN) was 

used to restore the morphology of the PPG signal while reducing the MAs [17]. 

An LMS-Newton adaptive filter method based on the estimation of the 

fundamental frequency was also put forward to diminish the effect of MAs on 

pulse oximeter data [18]. Three algorithms, called the ICA-adaptive filter 

algorithm, Butterworth ICA-adaptive filter algorithm, and Butterworth-wavelet 

transform algorithm, were developed to eliminate the effect of MAs [19]. A 

multi-channel spectral matrix decomposition model was proposed to predict heart 

rate in the presence of vigorous physical activity. The elimination of MAs was 

first modelled as a spectral matrix decomposition optimisation issue, and a new 

spectral peak detection approach was then applied to calculate the heart rate when 

motion disturbances had been minimised [21]. A new signal processing 

framework was described in [22] that employed a two-channel PPG signals to 

estimate heart rate in two steps: the first step used an absolute criterion condition 

based on ensemble EMD to eliminate the potential run-away errors, while the 

second step strengthened the algorithm’s robustness against off-track errors. A 

generic algorithm [23] was proposed for a beat-to-beat analysis for artefact-

reduced PPG signals after the removal of periodic motion artifacts. The suggested 

approach was useful for monitoring the activities of daily living, cardio-

pulmonary exercise testing, and cardiopulmonary resuscitation.  

A variational mode decomposition and Hilbert transform approach have also 

been presented [24] to estimate the pulse rate from an MA-corrupted PPG signal, 

and the acquired IMFs were used to construct the associated marginal spectrum. 

A method based on the time-frequency components of the PPG signal [25] was 

proposed to compute the arterial oxygen saturation; in this approach, a 22-minute 

dataset was acquired from 10 participants during voluntarily induced hypoxia, 

with and without subject-induced MAs. An envelope filtering and time-delay 

neural network have also been applied to a single-noise interaction model for MA 

removal under conditions of rigorous physical exercise [26]. A fusion-based 

technique was proposed in [27] to eliminate MAs from the PPG signal. This 

technique required the use of a PPG sensor and accelerometer data at the same 

time. Signal-quality assessment-guided compression of the PPG signal using an 

improved gain shaped vector quantisation technique [28] was explored in regard 

to monitoring the health conditions of patients. In this method, kurtosis and 

autocorrelation parameters were computed to identify good-quality pulse signals, 

and a deep auto encoder was used to minimise the percentage root-mean-squared 

difference error. A new approach was also developed to reduce the MAs in a PPG 

signal using the ambient light contribution as a reference [29].  

In this paper, we propose an effective adaptive technique for de-noising a 

PPG signal. In general, an adaptive filter requires a reference signal for its 

operation, and the majority of adaptive-filter-based MA reduction signal 

processing methods have employed an additional sensor [31−33], typically an 
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accelerometer sensor, to capture the MAs, and have used this as reference signal. 

This approach leads to high power consumption and problems associated with 

the integration of accelerometer and PPG sensor [34]. In contrast, we propose a 

method that inherently generates the noise reference from the corrupted PPG 

signal, thereby dispensing with the need for an additional sensor. WT processing 

of the noisy PPG signal provides a way to obtain a secondary noise reference 

signal for adaptive filtering. The proposed technique de-noises the PPG signal 

while restoring essential physiological parameters such as the heart rate and 

respiratory rate, in addition to enabling a reliable estimation of SpO2. This work 

represents an extension to a previous paper presented at a conference [30]. 

2 Method 

Adaptive filtering will be always the best approach in circumstances where 

desired and undesired signals are in the same frequency band. The presence of 

MAs in a PPG signal is an example of such a scenario, and adaptive filtering 

therefore offers the best solution. Our objective is to develop a method to 

eliminate the noise from PPG signals using adaptive filtering, where the 

secondary noise is inherently generated from the corrupted signal using a WT 

method, as shown in Fig. 1. 
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Fig. 1 − Block diagram showing the generation of an inherent noise reference signal 

using a wavelet transform for adaptive filtering, to eliminate the noise from PPG data. 
 

2.1 Adaptive filtering 

In general, adaptive filtering methods alter the filtering coefficients based on 

different self-adjusting algorithms in order to eliminate undesired signals that are 

in the same frequency band as the desired signal. With the aim of reducing the 

minimum mean square error, different variants of LMS algorithms have been 

developed to converge in fewer iterations. The conventional LMS algorithm 

equations are given below. 

The output of a LMS adaptive filter, as given in [20], is 

 
T[ ] = [ ] [ ]y n w n x n , (1) 

where [ ]x n  is the input, [ ]y n  is the output, [ ]d n  is the desired output, [ ]w n  is 

the filter weight vector, [ ]e n  is the error,  and  is the step size. 
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The error is given by 

 [ ] = [ ] [ ]e n d n y n− . (2) 

Based on this error term, the weight vector update equation is  

 [ 1] = [ ] + [ ] [ ]w n w n e n x n+  . (3) 

The adaptive step size LMS (AS-LMS) algorithm [20] has been proven to be 

an effective LMS algorithm, as it requires fewer iterations to converge compared 

with other variants. The convergence parameter is adaptively modified by the 

introduction of a gradient vector, as follows:   

 [ 1] = [ ]+ [ ] [ ] [ ]Hn n e n n u n +    , (4) 

where   is a positive constant used to control updating of the step size, and 

 
( )

gradient vector
( )

w n

n


 = =



H
. (5) 

The reference signal is an essential aspect of an LMS algorithm for an 

adaptive filter. In the following section, we explain how the reference signal is 

inherently generated from the noisy PPG signal, thus avoiding the need for an 

additional sensor. 

2.2 Wavelet transform 

Pulse oximeter PPG signals are periodic, with a time-varying period. A WT 

gives both time and frequency information on the signal at the same time, and is 

used to analyse non-stationary signals. Equation (6) shows the WT of a given 

signal f (t) with a suitable mother wavelet window ψ(t) [5], 

 ( )
1

, ( )d
t s

F s d f t t
ds

 − 
=   

 −

,  (6) 

where s is the time-shifting parameter, and d is the time-scaling parameter. 

With considering appropriate filters, a discrete wavelet transform (DWT) 

decomposes the PPG signal into the corresponding approximate (Aj) and detail 

coefficients (Dj). The noise reference signal can be generated by suitably 

modifying the values of Aj and Dj, as described below. 

2.2 Generation of the Inherent Noise Reference Signal 

The process used to generate a wavelet-transform-driven inherent noise 

reference (INR) from a noisy PPG signal is summarised below. 

i. By applying wavelet decomposition, the recorded noisy PPG data are 

decomposed into equivalent approximate (Aj) and detail coefficients (Dj). 
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ii. The signal randomness is taken as the measure for identifying the MAs. 

The kurtosis (ku), which is used here as a measure of the randomness of 

a signal x(t), is given by: 

 
( )

4

4

E x
ku

−
=


, (7) 

where  and   are the mean and standard deviation of x(t), respectively. 

Based on the computed kurtosis values, the signal, noise and a 

combination of signal and noise can be identified.  

iii. To generate an INR, the approximate and detail coefficients of the PPG 

signal are altered using the following methodology. 

Based on the kurtosis values of coefficients Aj and Dj values, the 

following can be inferred: 

a. A very high kurtosis indicates that the random constituents 

represent out-of-band MA noise, and we therefore keep the 

corresponding coefficients Aj and Dj unmodified. 

b. Moderate kurtosis values for the decomposed Aj and Dj indicates 

that these correspond to a blend of the desired PPG data with 

undesired in-band noise. Thresholding is therefore applied to the 

Aj and Dj coefficients to obtain the INR signal. 

c. Low kurtosis values indicate that the constituents correspond to 

periodic pulsatile constituents. In this case, Aj and Dj are set to 

zero. 

iv. These steps enable clear identification of the in-band and out-of-band 

MA noise. Finally, the INR signal is generated using the Aj and Dj 

constituents that have been altered as described above. 

An implementation of these steps, which were to generate the INR signal 

component, is presented in the following sections. 

3 Results 

The pulse oximeter data used for our experiments were acquired from 

various volunteers in our research laboratory using a BIOPAC system, as 

illustrated in Fig. 2. Following a pre-defined protocol, PPG signals were acquired 

and MAs were intentionally added. 

Signals were recorded in a fashion that acquired signal should consist of 

noise frequency as in-band and out-of-band of interest. Volunteers first gave their 

signed, written consent to this process. 
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(a) 

 

(b) 

Fig. 2 − (a) Setup used for BIOPAC PPG experiments; 

(b) A record of pulse oximeter data. 

 

3.1 PPG normalisation 

In order to obtain a reference signal, the PPGs were first normalised for the 

purpose of investigation. To achieve this, 10 cycles of PPG data were considered, 

and the corresponding values of the mean and variance were calculated. 

 

Fig. 3 − Recorded and corresponding normalised PPG data. 
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Finally, to obtain the reference signal, the mean was subtracted and the 

variance was divided over the 10 cycles of PPG data. The recorded and 

normalised PPG data are shown in Fig. 3. 

3.2 Generation of the Inherent Noise Reference Signal 

After wavelet decomposition of the normalised PPG signal, the kurtosis of 

the approximate and detail coefficients was exploited as a measure of the 

randomness. We can consider three cases: 

Case 1: If the data are either periodic or quasi-periodic in nature, the kurtosis 

value will be close to three. In this case, the Aj and Dj coefficients 

are set to zero. 

Case 2: If the data represent a combination of either periodic or quasi-

periodic components with random noise, the kurtosis values will be 

greater than three and less than or equal to 10. In this case, 

thresholding is applied to the Aj and Dj coefficients to obtain the 

INR. 

Case 3: If the data contain purely random components, the kurtosis value 

will be above 10. In this case, the coefficients Aj and Dj are unaltered. 

Fig. 4 displays pseudocode for the INR signal generation algorithm based on 

a wavelet transform. 

i. If only out-of-band noise is present in the signal x1(n) 

The kurtosis values for the approximate (Aj) and detail (Dj) coefficients for 

an eight-level decomposed vector x1(n) are presented in Table 1. Here, the 

kurtosis of the detail coefficient D4 is close to three, this representing a periodic 

component. In this case, the component is the PPG pulsatile component.  

Table 1 

Kurtosis values for the approximate and detail coefficients,  

for out-of-band noise only. 

Coefficient Kurtosis 

D1 29.46 

D2 26.73 

D3 19.29 

D4 2.89 

D5 2.21 

D6 2.33 

D7 2.47 

D8 2.11 

A8 2.68 
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The kurtosis values for the detail coefficients D1, D2 and D3 are very high, 

indicating that these are out-of-band noise coefficients. The remaining kurtosis 

values are lower than three, representing other important signal components with 

some periodic nature. 
 

 Pseudocode: Inherent noise reference signal generation 

algorithm 

 Input: PPG signal from sensor 

 Output: Inherent noise reference signal 

1. Preprocessing: PPG signal normalisation 

 //N- level Wavelet decomposition on normalised PPG 

signal // 

2. N=8; 

3. [Aj, Dj]= wavelet decom (normalised PPG signal, N 

levels) 

 // Kurtosis computation for Aj, Dj // 

4. Compute the kurtosis of coefficients Dj  

5. for j=1:N 

6.       Compute the kurtosis of coefficients Dj  

7. end 

8. Compute the  kurtosis of coefficients AN  

 // Modify Aj , Dj  for three cases// 

10. for k=1:N 

11.       if kurtosis(Dk)>10 & kurtosis(Dk)<100 

12.           Reset the values of Dk 

13.          else if kurtosis(Dk)>3 & kurtosis(Dk)<10  

14.                  Apply thresholding to Dk 

15.                 else if kurtosis(Dk) ≤ 3 

16.                         Set Dj to all zeros 

17.  End 

18. End 

19. for m=N; 

20. if kurtosis(Am)>10 & kurtosis(Am)<100 

21.     Reset the values of Am 

22.     else if kurtosis(Am)>3 & kurtosis(Am)<10 

23.             Apply thresholding to Am 

24.             else if kurtosis(Am) ≤ 3 

25. Set Am to all zeros 

26.         End 

27. End 

 // N- level wavelet reconstruction on modified AN and D1 to 

DN // 

28. Noise reference=WaveRecon(modified Aj, Dj) 

Fig. 4 − Pseudocode for the inherent noise reference signal generation algorithm. 

 

The detail coefficients D1, D2, D3 therefore represent the noise present in the 

signal x1(n). So, to extract, noise reference, except D1, D2, D3 (representing out-

of-band noise), the values of all the other coefficients will be forced to zero. 
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Wavelet reconstruction is then applied to the modified coefficients to obtain a 

noise reference signal for the adaptive filtering process. 

The AS-LMS algorithm is employed to de-noise the PPG signal using this 

inherently generated noise reference signal. The results discussed above are 

shown in Fig. 5. The PPG signal corrupted with out-of-band noise is presented 

Fig. 5a, while the WT-generated inherent out-of-band noise is shown in Fig. 5b 

and the corresponding PPG signal after de-noising using the proposed adaptive 

filter is shown in Fig. 5c. 

 

Fig. 5 − PPG data: (a) signal corrupted with out-of-band noise;  

(b) the generated inherent noise reference signal;  

(c) data after noise elimination using the proposed technique. 

 

Fig. 6 − Spectra for: (a) acquired PPG data with out-of-band noise;  

(b) The generated inherent noise reference signal; 

 (c) PPG data after noise elimination using the proposed technique. 
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The corresponding spectra are shown in Fig. 6. From Fig. 6b, it can be seen 

that the generated inherent noise reference appears as an out-of-band component, 

and this component is reduced to a greater extent in the de-noised spectrum Fig. 6c. 

ii. If only in-band noise is present in the signal x2(n) 

The kurtosis values for the approximate (Aj) and detail (Dj) coefficients for 

an eight-level decomposed signal x2(n) are presented in Table 2. 

Table 2 

Kurtosis values for the approximate and detail coefficients  

for the case of in-band noise only. 

Coefficient Kurtosis 

D1 8.55 

D2 6.39 

D3 8.41 

D4 3.92 

D5 4.67 

D6 4.33 

D7 5.53 

D8 4.22 

A8 4.73 
  

The kurtosis values for all coefficients are between three and 10, representing 

both signal and noise, meaning that this situation resembles the case of in-band 

noise. Compared to the other coefficients, coefficient D4 is closest to three, and 

therefore represents a possible pulsatile component. Thresholding is then applied 

to all coefficients to generate a noise reference signal for the adaptive filtering 

process. 

Wavelet reconstruction is performed on the modified coefficients to generate 

an INR for the adaptive filtering process. The results discussed above are shown 

in Fig. 7. The PPG signal corrupted with most prominent in-band noise is 

presented in Fig. 7a, while the inherent out-of-band noise generated with a WT is 

shown in Fig. 7b and the corresponding de-noised PPG signal using the proposed 

adaptive filtering method is shown in Fig. 7c. Their corresponding spectra are 

shown in Fig. 8. 

Fig. 8 shows a representative example of the efficacy of the proposed 

method. The generated in-band noise reference, shown in Fig. 8b, helps in 

reducing the MAs in the PPG signal, as shown in Fig. 8c, while at same time 

enhancing the signal quality, and clearly restores the respiratory signal. In 

practice, most existing MA reduction methods eliminate the respiratory 

component present in the PPG in the process of MA reduction. 
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Fig. 7− (a) PPG data corrupted with in-band noise;  

(b) generated inherent noise reference signal;  

(c) PPG data after noise elimination using the proposed technique. 

 

Fig. 8 − Spectra for: (a) PPG signal corrupted with in-band noise;  

(b) generated inherent noise reference signal;  

(c) PPG data after noise elimination using the proposed technique. 
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therefore applied to the coefficients A8 and D4 to D8. Wavelet reconstruction is 

performed on the modified coefficients to generate a noise reference signal for 

the adaptive filtering process, representing both in-band and out-of-band noise. 

Table 3 

Kurtosis values for the approximate and detail coefficients  

for both in-band and out-of-band noise. 

Coefficient Kurtosis 

D1 31.67 

D2 27.81 

D3 18.37 

D4 4.34  

D5 4.67 

D6 4.76 

D7 5.53 

D8 4.22 

A8 4.73 
  

 

Fig. 9 − (a) Acquired PPG data with in-band and out-of-band noise;  

(b) generated inherent noise reference signal;  

(c) PPG data after noise elimination using the proposed technique. 
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and the PPG signal after de-noising using the proposed adaptive filtering method 

is shown in Fig. 9c. 

Their corresponding spectra are shown in Fig. 10, which provides another 

representative example of the efficacy of the proposed method. The generated 

INR, with both in-band and out-of-band noise, as shown in Fig. 10b, participating 

in the adaptive filtering, effectively reduces the MAs in the PPG signal, as shown 

in Fig. 10c, while preserving the respiratory component. 

 

Fig. 10 − Spectra for: (a) PPG signal corrupted with in-band and out-of-band noise;  

(b) generated inherent noise reference signal;  

(c) PPG data after noise elimination using the proposed technique. 
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Fig. 11 − Time domain plot of a noisy PPG signal and signals reconstructed  

from the wavelet coefficients: approximate (Aj) and detail (Dj). 
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Fig. 12 − Frequency domain plots of noisy PPG signals and spectra for the 

reconstructed signals from the wavelet coefficients: approximate (Aj) and detail (Dj). 

0

1

0

1

0

1

Recorded

D
1

D
2

0

1

0

1

M
ag

n
it

u
d

e

0

1

D
3

D
4

D
5

0

1

0

1

0

1

0 5 10 15 20
0

1

Frequency (Hz)

D
6

D
7

D
8

A
8



Wavelet Transform Generated Inherent Noise Reference for Adaptive Filtering… 

267 

After establishing the validity of the generated INR, the complete method 

was applied to corrupted PPG signals. The results are depicted in Figs. 13 and 14. 

 

Fig. 13 − (a) Noisy pulse oximeter data with vertical MAs of the finger;  

(b) inherent noise reference signal reconstructed using wavelet transform;  

(c) pulse oximeter data after noise elimination using the proposed methodology. 

 

Fig. 14 − (a) Noisy pulse oximeter data with horizontal MAs of the finger;  

(b) inherent noise reference signal reconstructed using wavelet transform;  

(c) pulse oximeter data after noise elimination using the proposed methodology. 

 

A pulse oximeter PPG signal with vertical MAs is shown in Fig. 13a. The 

acquired PPG data were modified using the proposed methodology, and the INR 

signal generated in this way, shown in Fig. 13b, was used for further processing 
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with the adaptive filter. It was established that the adaptive step size LMS (AS-

LMS) algorithm yielded improved convergence compared to the other variants of 

LMS adaptive filtering. The pulse oximeter signal after noise elimination is 

shown in Fig. 13c. Similar results are found from an analysis of pulse oximeter 

PPG data with horizontal MAs, as presented in Fig. 14. 

4 Discussion 

 Statistical Analysis 

The DC and AC component values of the red and IR PPG cycles are required 

in order to estimate the SpO2. The peak-to-peak values of the pulsatile 

components of the red and IR PPG signals are used to first compute the “ratio of 

ratios” R and then to estimate the SpO2 values [15], as shown below: 

 
Re Re( )

( )

d d

IR IR

AC DC
R

AC DC
= , (7) 

 2% (110 25 )%SpO R= − . (8) 

As the MAs disturb the peak-to-peak values of the PPG cycles, the extent to 

which the cycles are disturbed is observed by computing the mean ± standard 

deviation (SD) for the peak-to-peak values of the recovered PPG cycles. The 

results in Table 4 reveal that the peak-to-peak values for the PPG signal 

recovered using the proposed method are very close to the clean portion of the 

PPG signal, thus illustrating the robustness of our approach. These restored peak-

to-peak values can then be used to estimate SpO2, as shown in (8). 
 

Table 4 

Peak-to-peak values of pulse oximeter data. 

PPG 
Horizontal 

motion 
Vertical motion Bending motion 

Clean section 0.370±0.024 0.427±0.044 0.356±0.021 

Corrupted section 0.425±0.086 0.513±0.106 0.458±0.066 

Section recovered 

using WTB-AF 
0.394±0.048 0.471±0.056 0.389±0.046 

 

It is a very good indicator to assess the potential of the method, since 

estimation of SpO2 depends on that. The values of SpO2 in Table 5 that were 

estimated using the proposed method are nearly equal to the values for the clean 

PPG section, thus illustrating the efficacy of the proposed method, which has a 

worst-case accuracy of 0.5%. 
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Table 5 

Computed SpO2 values. 

PPG 

SpO2 % estimation 

Horizontal motion 
Vertical 

motion 

Bending 

motion 

Clear portion 97.8 96.9 98.1 

Corrupted section 94.1 95.2 95.7 

Section recovered   

using WTB-AF 
97.4 96.4 97.6 

Accuracy 0.4% 0.5% 0.5% 
 

Finally, to assess the validity of the generated reference signal using 

statistical measures, time-domain and frequency-domain similarity measures 

were computed as follows. The correlation coefficient (CC) is defined as 

 
( )( )

( ) ( )

1

2 2

1 1

cov( , )
n

i ii
XY

n n
X Y

i ii i

x x y yX Y
C

x x y y

=

= =

− −
= =

  − −



 
, (9) 

where cov( , )X Y  represents the covariance between X and Y; and ,X Y   

represent the standard deviation in X and Y, respectively. 

The values of CC were computed between the noisy PPG, noise reference 

and de-noised PPG signals, and the results are presented in Table 7. 

CCNPRS represents the CC between the noisy PPG signal (NP) and noise 

reference signal (RS). This coefficient should show 50% similarity. 

CCNPDP represents the CC between the noisy PPG signal (NP) and the de-

noised PPG signal (DP). This coefficient should show a similarity of around 70%. 

CCRSDP represents the CC between the noise reference signal (RS) and the 

de-noised PPG signal (DP). This coefficient should show minimal similarity. 

The frequency-domain measure is defined as 

 

2

( )

( ) ( )

xy

xx yy

S k
MSC

S k S k
= , (10) 

where ( )xyS k is the cross-power spectral density of x and y, and ( )xxS k and 

( )yyS k  are the auto-power spectral densities of x and y, respectively. 

A frequency-domain measure called the magnitude squared coherence 

(MSC) is computed as follows: 
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– MSCNPRS represents the MSC between the noisy PPG (NP) signal and the 

noise reference signal (RS). This coefficient should show a 50% similarity. 

– MSCNPDP represents the CC between the noisy PPG (NP) and the de-noised 

PPG signal (DP). This coefficient should show a similarity of around 70%. 

– MSCRSDP represents the CC between the noise reference signal (RS) and 

the de-noised PPG signal (DP). This coefficient shall show minimal similarity. 

From the computed CC values for different MAs in Table 6, it can be 

observed that the value of CCNPRS, which is greater than 0.5 and less than 0.6, 

indicates a similarity of greater than 50% between the noisy PPG signal and the 

noise reference signal. Similarly, the value of CCNPDP indicates that a similarity 

of nearly 70% can be seen between the noisy and PPG signals. Finally, as 

expected, the CCRSDP reveals little correlation between noise reference signal and 

the de-noised PPG signal. The results for the frequency-domain MSC presented 

in Table 7 also confirm the validity of the generated inherent noise reference. 
 

Table 6 

Calculated values of CC for different motion artifacts. 

 
Vertical 

motion 

Horizontal 

motion 

Bending 

motion 

CCNPRS 0.54 0.58 0.59 

CCNPDP 0.72 0.73 0.68 

CCRSDP 0.08 0.06 0.07 
 

Table 7 

Calculated values of MSC for different motion artifacts. 

 
Vertical 

motion 

Horizontal 

motion 

Bending 

motion 

MSCNPRS 0.52 0.54 0.56 

MSCNPDP 0.83 0.79 0.76 

MSCRSDP 0.09 0.08 0.11 

 

The results and the discussion presented above prove the validity of the INR 

signal and the efficacy of the proposed method of reducing MAs from PPG 

signals to achieve reliable SpO2 estimations. 

5 Conclusion 

In this work, we have presented an effective adaptive filtering method using 

a WT for the elimination of MAs from pulse oximeter signals. Most existing 

adaptive MA reduction methods use an additional sensor to capture the MAs for 
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use as a reference signal for adaptive filtering. Our proposed method dispenses 

with the additional sensor, and inherently generates a noise reference from the 

corrupted PPG data using an efficient wavelet-based decomposition method. The 

INR generated in this way can be used with an adaptive step size LMS (AS-LMS) 

method of adaptive filtering, for the efficient reduction of MAs. Our approach 

was validated using time domain and frequency domain measures, and was found 

to give reliable SpO2 estimations with a worst-case accuracy of 0.5%. The most 

notable aspect of our method is that it restored the respiratory signal present in 

the PPG while efficiently reducing the MAs.  
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