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Application of Genetic Algorithms to an Inverse 
Field Problem in Magnetic Fluid Dynamics  

Milko Kuilekov1, Marek Ziolkowski1, 2, Hartmut Brauer1  

Abstract: The purpose of the present work is to study whether genetic algorithms 
can solve an inverse field problem in magnetic fluid dynamics (MFD) efficiently. 
We have investigated how the interface between two fluids of different con-
ductivity in a highly simplified model of an aluminum electrolysis cell can be re-
constructed by means of external magnetic field measurements. The knowledge 
of the interface deformation can be used to prevent undesired instabilities in alu-
minum reduction cells [1]. 
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face reconstruction. 

1 Introduction 
Genetic algorithms (GAs) – search techniques based on the mechanism of natural 

evolution and genetics – become more and more popular to solve optimisation problems. 
GAs can solve a broad spectrum of problems, from traditional optimisation in engineer-
ing to inverse field problems in MFD and financial prediction in economics. GAs has 
been shown to solve linear and non-linear problems by exploring all regions of the state 
space and exploiting promising areas through mutation, crossover, and selection opera-
tions [2, 3]. 

The basic idea of our research is to exploit different GAs and their parameters in 
order to obtain precise solution and efficiency of computation process. We have demon-
strated that the external magnetic field generated by the electrical current flowing 
through a highly simplified model of an aluminum reduction cell provides sufficient in-
formation to reconstruct the unknown interface shape. GA generates the inverse field so-
lution on the base of evaluation of the forward solution. 

2     Problem Definition 
Two fluids with different electrical conductivities are situated in a long cylinder 

with radius R (Fig.1). The cylinder walls are non-conducting. Along the length axis of 
the cylinder a homogeneous electrical current density J0 is applied. If the interface 
between the fluids is flat, the current density J is homogeneous everywhere. As soon as 
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the interface deviates from its flat shape due to interfacial waves or an external forcing, 
the current density will become inhomogeneous near the interface. If the perturbation of 
the fluid interface is non axisymmetric, it leads to a perturbation of the magnetic field 
outside the cylinder. This fact is used for the interface reconstructions. Impressed current 
is I =1 A, conductivity of fluid 1 is γ1 = 100 S/m and conductivity of fluid 2 is γ2 = 

mS106.3 6×= . 
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Fig. 1 – Simplified model of aluminum reduction cell. 

2.1   Basic Dependencies 
Interface perturbation is expressed by Bessel and trigonometric functions [4] and 

has the from 
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where r and α are the radial and azimuthal coordinates, Jm is a Bessel function of the 
first kind, kmn= rmn/R, rmn is the n-th solution of the equation J’m(r) = 0 at m > 0, n is the 
radial mode number and m is the azimuthal mode number, κmn is a weight coefficient of 
mode (m, n) and A is a scaling factor of the amplitude.  

The magnetic field is obtained using the current density perturbation and the Biot–
Savart law. Electrical potential perturbation in the fluids is described as [3] 
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where J0 is the impressed current density, γ1 and γ2 are the conductivities of fluids.  
Current density perturbation is calculated from 

 ϕγ ∇⋅−=j . (3) 

Applying the Biot–Savart law, the magnetic flux density perturbation is received 
from the equation 

 ∫∫∫ −
−×

=
)(

3
0 '

|'|
)'(

4
)(

V

dV
rr

rrjrb
π

µ
. (4) 

2.1 Simple Genetic Algorithm Solver 
A block diagram of the simple genetic algorithm optimiser is presented in Fig.2. 

The inverse solver consists of three main parts: Initialisation, Evaluation and Simple GA. 
The Initialisation block is responsible for setting the GA parameters, defining the repre-
sentation scheme as it is discussed further, and for generating the initial solution. The 
Evaluation block contains the forward solution of the field problem as it is discussed in 
the previous section. Forward sub-block forms the magnetic field distribution, evaluated 
in the cost function sub-block. Simple GA generates the variables vector defining the in-
terface shape used from the forward solver at each iteration. 
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Fig. 2 – Block diagram of a Simple GA loop for obtaining 
the inverse solution. 
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2.2    Simple GA 
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Fig. 3 – Block diagram representing the forward solution calculations. 

 The use of a genetic algorithm requires the determination of six fundamental is-
sues: chromosome representation, selection function, the genetic operators making up 
the reproduction function, the creation of initial population, termination criteria, and the 
cost function. The representation scheme determines how the problem is structured in 
the GA and also determines the genetic operators that are used. Each individual or chro-
mosome is made up of a sequence of genes from a certain alphabet. An alphabet could 
consist of binary digits, floating point numbers, integers, symbols, matrices, etc. The se-
lection of individuals to produce successive generations plays an extremely important 
role in a genetic algorithm. A probabilistic selection is performed based upon the indi-
vidual’s fitness such that the better individuals have an increased chance of being se-
lected. There are several schemes for the selection process: roulette wheel selection and 
its extensions, scaling techniques, tournament, elitism models, and ranking methods. Ge-
netic operators provide the basic search mechanism of the GA. The operators are used to 
create new solutions based on existing solutions in the population. There are two basic 
types of operators: crossover and mutation. Crossover takes two individuals and pro-
duces two new individuals while mutation alters one individual to produce a single new 
solution. The application of these two basic types of operators and their derivatives 
depends on the used chromosome representation. The GA requires an initial population. 
The most common method is to generate solutions for the entire population randomly. 
The beginning population can be seeded with potentially good solutions. The GA moves 
from generation to generation selecting and reproducing parents until a termination crite-
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rion is met. The most frequently used stopping criterion is a specified maximum number 
of generations. The cost function is formed from an evaluation block (Fig.2) connected 
to the solved problem and independent of the GA. The cost (objective) function repre-
sents current solution goodness. In the simple genetic algorithm the new generation has 
the same size as the current generation, which is completely replaced. 

2.3   Forward Block 
In Fig.3 is represented the Forward Block diagram. The main purpose of the shown 

solver is to form a magnetic induction template corresponding to a certain interface de-
scription. For forward calculations we have used finite element program - FEM3D [5] 
combined with calculations for the magnetic field in certain positions around the cylin-
der. The finite element mesh with 27707 nodes and 123200 tetrahedrons is shown in 
Fig.4. 

Weight coefficients κmn described in Basic Dependencies section are used as input 
variables for the FEM program. From the input vector variables and a set of geometrical 
and physical constants is formed the geometry model of the cell. Output of the FEM 
module is a set of current density dipoles calculated for a finite number of points from 
the cylinder volume. The extracted current density is used from the next program sub-
blocks, which include Biot-Savart Law calculations and magnetic flux density distribu-
tion in certain predefined number of points around the cell. 

 

Fig. 4 – Finite element method mesh of the cylinder. 
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2.4   Inverse problem strategy 
The magnetic flux density measured in several positions located on concentric rings 

around the cylinder is used to identify the interface (Fig.1). In our computation case we 
have presumed that the fluctuating interface is in a steady state, i.e. we choose the time 
moment in which the measured signal has a maximal value. Genetic algorithm is used 
together with the forward solution (Fig.3) in a computation loop (Fig.2). GA generates 
current interface reconstruction parameters κmn, according to evolution principles. The 
procedure is repeated until the objective function reaches predefined stopping criteria. 
For our computations we have applied a C++ library of genetic algorithm components 
(GAlib) developed at the M. I. T. [6]. 

The cost (objective) function (CF) is defined as a sum of differences between meas-
ured (parametric) and computed magnetic flux density components br and bz, 

 ∑
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where NP is the number of sensors in row and NR is the number of rows. 

3   Computation parameters. Simple GA optimisation results 
In the considered case a fixed scaling amplitude A = 2.5 mm and 9 weight coeffi-

cients κmn encoded by GA like binary strings have been used. The first experimental 
implementation of the studied problem will be conducted with 1 sensor row of 8 sensors 
uniformly distributed around the cylinder. The distance between the sensors and the wall 
of the cell is 10 mm. According that for our computations we have used the same sensor 
(template) ring situated in the middle of the cylinder (Fig.7). As an example, we have 
reconstructed the shape of the interface described by a hybrid mode: η13 + η22 (Fig.5). 
Magnetic flux density obtained from the considered sensor template has component bz = 
= 0. The interface has been reconstructed only from component br measured in 8 sensor 
points. The corresponding magnetic field is shown in Fig.6. 

 

Fig. 5 – Constitution of the examined test mode.  
The sample interface is a superposition of two single interface modes. 
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Fig. 6 – Magnetic flux density component br simulated for hybrid mode 

η13 +η22 with 8  sensors at z = H/2, where H is cylinder height. 

 

0o

270o

 

Fig.7 – Magnetic sensor positions according domain 2 of the cell. 

3.1   GA Parameters 
The population size consists of 40 individuals. Binary strings of 16 bits length are 

allocated to represent each variable, yielding to a chromosome length of 144 bits per in-
dividual. GA has maximized negative value of fitness function, i.e. has minimized the 
cost function value. As a scaling scheme a sigma truncation fitness has been used. The 
sigma truncation scaling scheme is defined as: 
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where f = - CF is fitness value, f  is the population average fitness and  fdev is a measure 
of the deviation of the fitness value from the average value. Proportional selection strat-
egy (roulette wheel selection) has been used. The probability of selecting an individual 
from a population is purely function of relative fitness of the individual. One point cross-
over has been applied with an occurrence probability pc = 0.95 per chromosome pair. 
The mutation probability was pm = 0.01. Elitism strategy has been also chosen, because 
the best individual from each generation has been copied to the next generation. 

3.2   Computation results 
Optimization run of 100 generations has been performed. An objective function 

convergence curve is shown in Fig.8. It can be seen that between 50th and 70th genera-
tions the cost function value remains unchanged. That undesired effect is called prema-
ture convergence. The quality of the solution is evaluated by the difference between 
exact and reconstructed interface, defining the reconstruction error 
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where k is a finite number of points, z’i is the exact interface coordinate at point i and zi 
is the reconstructed interface coordinate at point i. Reconstruction error versus the gen-
eration number is shown in Fig.9. After 100 generations, for  k = 441 and CF = 2 nT, the 
reconstruction error is ∆ z = 9 %. The reconstructed and the exact interface are shown in 
Fig.10. It is obvious that simple GA fails in finding interface shape. That is explained as 
a convergence to a suboptimal point.  

If some of the average individuals have extraordinary fitness, the mechanism of 
GAs may lead to a premature convergence, which is defined as a convergence to a sub 
optimal solution. 
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Fig. 8 – Convergence curve of Simple GA optimization loop 
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Fig. 9 – Reconstruction error versus generations of Simple GA optimisation loop. 

 

     
 

Fig. 10 – Exact (left) and reconstructed (right) interfaces. Simple GA. 
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 4    Multi – loop GA  
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Fig. 11 – Block diagram of a multi – loop genetic algorithm optimizer. 

The problem of the premature convergence discussed in the previous section can be 
avoided by applying multiple, optimisation loop. A block diagram of such multi – loop 
GA is shown in Fig.11. In multiple loops the simple GA is used in several consecutive 
runs. The loop consists of the already known GA Initialisation and Simple GA blocks 
and of a Scaling block (Fig.12). The purpose of the Scaling block is to re-scale the initial 
vector of each simple GA run to the last vector obtained from the previous run. In that 
sense, starting point for each run is the same but the variable vectors are scaled to the last 
point from the run before.  

4.1   Precision of the solution and comparison 
Computation process has been performed with the same GA parameters discussed 

in GA parameters section. Two consecutive runs of 50 generations each have been ap-
plied. The number and position of sensors were the same as in the previous section and 
the hybrid mode η13 + η22 was reconstructed. The computation results are compared to 
those of the simple GA run. Cost function convergence curves are shown in Fig.13. It is 
seen that up to 50 generations multi – loop and simple GA run curves match and after 50 
generations the multi – loop curve has continued going down to the optimal cost function 
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value. Thus the problem of premature convergence has been overcome. Reconstruction 
error versus generations is shown in Fig.14. After 2 times 50 generations, for k = 441 
and CF = 0.11 nT, the reconstruction error is ∆z = 0.36 %, i.e. a much higher precision 
was achieved. Reconstructed and exact interface are shown in Fig.15.  

A > Amax?

scale[i] =    scale[M*N+1]κ / κ 0 mn mnL ,   = AL / A0,

i = [1..M*N], m = [1..M], n = [1..N]
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Fig. 12 – Scaling Block. 

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100
Generation number

∆
z ,

 %

Multi - Loop
GA
Simple GA

 
Fig. 13 – Convergence curves of Mult Loop and Simple GA. 
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Fig. 14 – Reconstruction error versus generations of Multi – Loop and Simple GA. 

 

 
 

Fig. 15 – Exact(left) and reconstructed(right) interfaces for 
the Multi – Loop GA optimization run. 

 
5     Conclusions 

The predefined interface between the two conducting fluids was reconstructed with 
high precision from flux density component br obtained from 8 sensors situated in the 
middle plane around the cylinder. The Simple GA loop solution fails because of its local 
convergence. Multiple GA loop that includes Simple GA loop inside avoids premature 
convergence and minimizes the cost function to very low values corresponding to a 
reconstruction with high precision. 
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