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Abstract: Signal processing helps monitor the condition of power equipment. 

Partial discharge (PD) signals used in condition-based maintenance give crucial 

information in the diagnosis of degradation of insulation. The acoustic emission 

technique (AET) is one of the most widely used techniques in PD signal analysis 

due to its inherent advantages. Analyzing acoustic emission partial discharge 

(AEPD) signals in the wavelet-domain provides critical insights into the location 

and type of the sources of PD. Selection of the most suitable mother wavelet in 

applying discrete wavelet transform (DWT) on AEPD signals is important as it 

will directly impact the outcome. For this selection, 36 wavelets belonging to the 

Daubechies, Symlets, Coiflets, and Bi-orthogonal families are investigated. For 

this purpose, five experimentally collected AEPD test signals are used. The 

selection is based on the “accuracy of wavelet decomposition results” in this work, 

probably for the first time. One mother wavelet from each family is individually 

shortlisted for all three performances, namely (a) reconstruction, (b) denoising, 

and (c) compression, by computing and comparing their commonly used metrics. 

Further, based on percentage energy criteria, the most suitable mother wavelets 

are identified as coif3, coif4, and coif5, respectively, for the three performances. 

Keywords: Acoustic emission partial discharge (AEPD), Condition monitoring, 

Discrete wavelet transform (DWT), Mother wavelet, Multi-resolution analysis 

(MRA), Oil insulation, Power transformer. 

1 Introduction 

Power transformers are indispensable in supplying power to Agricultural, 

Commercial, Domestic, and Industrial loads. Therefore, condition-based main-

tenance (CBM) is necessary to avoid unexpected power transformer breakdowns, 

reducing associated revenue losses [1, 2]. Past experiences indicate that transformer 

 
1Department of Electrical and Electronics Engineering, National Institute of Technology Karnataka,  

Surathkal, Mangalore 575025, India;   E-mails: shanmukhareddyvippala.217ee012@nitk.edu.in; gsp@nitk.edu.in; 

cmckrishnan@nitk.edu.in 
2Central Power Research Institute, Bangalore, Karnataka, India;   E-mail: tbs@cpri.in 



S.R. Vippala, G.S. Punekar, K. Chemmangat, B. Tangella 

164 

oil/paper insulation degradation is the primary cause of breakdown [3]. A 

problem with the insulation must be identified early in its nascent stages 

(incipient fault). Such problems can be identified by temperature measurements 

(hot-spot), gas-in-oil test by dissolved gas analysis (DGA), partial discharge (PD) 

measurements, and moisture analysis [1]. Among these, PD signals appear right 

at the initial stage of degradation of the insulation [4]. Due to this inherent 

advantage and its being a non-destructive technique (NDT), the PD detection 

method is suitable for monitoring the transformer insulation system. The PD in 

insulation systems manifests in heat, acoustic signals (sound), visible light 

signals, chemical changes, and electromagnetic waves (UHF signals) [4, 5 − 7]. 

Among these, the acoustic emission technique (AET) is one of the most suitable 

ways to measure PD indirectly due to its immunity to electromagnetic noise and 

interferences [5, 8]. The acoustic signals acquired by Piezoelectric sensors are in 

the time-domain. However, additional information can be retrieved by 

transforming it into the frequency-domain. The acoustic emission partial 

discharge (AEPD) signals are transient, irregular, and non-periodic [8]. In such 

cases, conventional Fourier transform loses time traces about the various 

frequencies emerging and extinguishing randomly [6, 9]. For such cases, time-

frequency (T-F) analysis is more suited [10]. In T-F analysis, the wavelet 

transform adopts variable wavelet windows for analyzing long-duration-low-

frequency components and short-duration-high-frequency components present in 

the signal [6, 9]. The wavelet transform of a time-domain signal generates a two-

dimensional (2-D) array of wavelet coefficients [6, 11]. 

Researchers have applied the wavelet transform in the areas like hydraulic 

systems, to extract fault features, medicine for efficient diagnoses, and 

seismology for analysis. There have been quite a few attempts to use the wavelet 

transform in PD-based fault diagnosis and localization in electrical equipment [2, 

7, 12]. In one such effort, the wavelet transform with ‘db2’ as the mother wavelet 

and a 6-level decomposition is used to extract the PD signals from a transformer 

[12]. The ‘bior2.6’ wavelet is used for DWT analysis of PD signals of an HVDC 

system in gas-insulated switchgear [7]. To distinguish between PD sources and 

their localization, DWT is applied with the ‘db4’ mother wavelet for the UHF-

PD signals generated in power transformers [2]. The wavelet analysis of AEPD 

signals can be performed to (a) estimate the rate of deterioration of the insulation, 

(b) determine moisture levels, (c) detect particles, (d) locate the source of a PD, 

and (e) classify the type of PDs based on feature extraction [6, 8, 13 − 15]. In [6], 

CWT using the ‘Morlet’ wavelet and DWT using the ‘sym8’ wavelet up to a 7-

level decomposition was applied to the acoustic emission pulses generated by 

types of PDs. The ‘db8’ mother wavelet with a 9-level decomposition is chosen 

for DWT of AEPD signals in identifying patterns of moisture contamination in 

transformer insulating oil [13]. The ‘db15’ mother wavelet and a 5-level 

decomposition are used to classify PDs occurring in oil-filled transformers 
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through measured AEPD signals [8]. The ‘Haar’ mother wavelet with 10 

decomposition levels is applied to perform analysis using AET for PD 

localization in oil [14]. In [15], the ‘Haar’ wavelet up to 13 levels is utilized for 

particle identification through AEPD measurements in transformer oil. 

Analyzing a signal with different wavelets gives results that are not unique 

[16]. Wavelet analysis decomposes the signal into several frequency levels (or 

sub-bands). The number of levels to which a signal is decomposed also plays a 

significant role in fetching beneficial information. Therefore, the present work 

attempts to select a suitable mother wavelet and its decomposition levels in the 

wavelet analysis of an AEPD signal. 

The selection of the mother wavelet can be achieved using either a qualitative 

or a quantitative approach. The qualitative approach utilizes properties of the 

mother wavelet, such as its compact support, vanishing moments, regularity, 

singularity, symmetry, orthogonality, support width, the existence of scaling 

function, and the degree of shift variance. Generally, it is hard to arrive at a final 

decision on mother wavelet selection since more than one mother wavelet has 

similar properties. The quantitative approach utilizes statistical parameters like 

“maximum cross-correlation coefficient”, “maximum normalized correlative 

energy”, “mean description length (MDL)”, and “variances of the CWT 

coefficients” in arriving at the suitable mother wavelet [16].  

In most previous works, the mother wavelets are selected based on the 

similarities between the mother wavelet and the acquired signal. It has been 

observed that such a similarity is only sometimes adequate since the most similar 

wavelet (to the acquired signal) may not always be suitable for wavelet-based 

signal processing. On the contrary, mother wavelet selection based on the 

"accuracy of wavelet decomposition results" is highly recommended [16]. Hence, 

in the present work, the mother wavelet selection is attempted based on the 

"accuracy of wavelet decomposition results" using experimentally collected 

AEPD signals. In all, 36 mother wavelets are compared using three performances: 

reconstruction, denoising and compression to identify the suitable mother 

wavelet. 

2 Fundamental Concepts 

2.1 AEPD signal and measurement 

Degradation and aging of insulation are significant causes of the failure of 

power apparati. These are caused by electrical, mechanical, environmental, and 

thermal stresses [5, 8, 17, 18]. Aging and degradation caused by these stresses 

result in a PD signal. The PD resulting in incipient faults can be detected by its 

manifestations like electromagnetic waves, sound, chemical changes, heat, light, 

and vibration. In the context of a power transformer, the AE signals caused by 
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PDs inside it travel in the form of waves and can be detected by an acoustic sensor 

placed on its body [13].  

A PD is a localised electrical discharge in an insulation system that can lead 

to deterioration, aging, and failure of electrical power equipment like a 

transformer. Conducting on-site electrical PD tests necessitates extensive 

arrangements and temporary removal of the power transformer from service. 

Challenges arise in accurately measuring electric PD magnitudes due to 

electromagnetic interference and background noise. Consequently, alternative 

non-conventional on-line techniques have been developed to address these issues. 

Of these methods, AET is notably advantageous. PD activity in the insulation 

system leads to acoustic signal emission. Due to PD, sudden release of energy in 

a material generates elastic waves (acoustic waves) that travel through the 

material. These AEPD signals are detected by a sensor and are analysed for 

valuable insights. AEPD signal's capability to detect and localise discharge events 

in real time makes it a valuable tool for the monitoring and maintenance of 

transformers. AET is a non-destructive and non-invasive method, allowing its 

application to power transformers while they are in service, thereby eliminating 

the need for power interruption [5]. 

Piezoelectric sensors are the most commonly used acoustic emission sensors 

[1, 5]. Silicon grease is used as a couplant between the wall of the tank and the 

sensor [5, 8]. The acoustic waves are in the ultrasound frequency range, i.e. 20 kHz 

to 1 MHz [14]. Typical acoustic applications include acoustic ranging, seismology, 

acoustic localization, sonar, engine testing, vibration analysis, ocean acoustic 

tomography process control, and bioacoustics. This paper deals with AEPD 

signals and analysis. 

2.2 Wavelet transform 

The wavelet transform of a signal is obtained by computing the correlation 

coefficients between the signal and mother wavelet at desired scales s and time 

instants τ. Here the scale represents a band of frequencies [6, 8]. The wavelet 

transform of a signal is commonly implemented in two different ways: (a) 

continuous wavelet transform (CWT) and (b) discrete wavelet transform (DWT). 

The terms continuous and discrete do not refer to the nature of the signal: instead, 

they refer to the nature of the scale axis adopted [9]. CWT uses a continuous set 

of scales and causes redundancy by computing many more coefficients than 

necessary, consequently increasing the computational cost [7, 11]. Compact 

representations are desirable for energy calculations, signal compression, signal 

representation, and other types of analysis. Therefore, CWT, evaluated at specific 

scales is then called DWT, and this helps in minimizing the number of 

coefficients used [9]. DWT can be treated as the discretized version of CWT [10]. 

Nevertheless, CWT has gained importance for (a) the detection of oscillatory 

features, (b) singularity/regularity detection, (c) estimation of instantaneous 
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frequencies, and (d) filtering and feature extraction. The DWT of a signal f(t) using 

mother wavelet ψ is defined using (1). Here m can be described as a discretized 

version of scale s denoted by s = 2m (dyadic scaling), and n is the discretized 

version of translation parameter τ denoted by τ = n2m [6, 7]. In (1), symbol * 

denotes the complex conjugate of wavelet ψ. The wavelet at scale s = 1 or level 

m = 0 is called the mother wavelet. The wavelets with scales 0 < s < 1 and s > 1 

result in compression and dilation of mother wavelets, respectively, referred to as 

daughter wavelets [6]. 
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In DWT, mother wavelets do not have analytical expressions. Instead, each 

mother wavelet possesses corresponding decomposition high pass gd[n] and low 

pass hd[n] filters as well as reconstruction high pass gr[n] and low pass hr[n] filters 

with coefficients of certain length [6, 19]. The mother wavelet functions are 

evaluated from these filter coefficients iteratively [20]. Multi-resolution analysis 

(MRA) is a widely implemented decomposition tool in DWT to study different 

frequency sub-bands with appropriate time resolutions [6, 7]. In MRA, initially, 

the acquired discrete signal is treated as the best approximation coefficients 

available and is denoted as band A0, which has the frequency information of  

[0 − fmax]. The maximum detectable frequency (fmax) is half of the sampling 

frequency (fs) given by Nyquist criteria. The decomposition of a signal at each 

stage is a two-step process. First, the available coefficients are convolved with 

the hd[n] and gd[n] filters for low-frequency and high-frequency components, 

respectively. Then, they are down-sampled by 2 to avoid overlapping frequency 

sub-bands [18, 21]. At the end of this 1st stage, the decomposition results in a set 

of approximation coefficients and detailed coefficients referred to as the A1 and 

D1 sub-bands with [0 − fmax/2] and [fmax/2 − fmax] frequencies, respectively  

[12, 22]. The approximation coefficients contain low-frequency components 

(also known as global features), and the detail coefficients contain high-

frequency components (also known as local features) [14, 23]. In the next stage, 

sub-band A1 is further decomposed into low-frequency components sub-band A2 

and high-frequency components sub-band D2. The detailed coefficients’ sub-

band D1 is left undisturbed. Generally, in MRA, an N-level decomposition of a 

signal results in N-detail levels {D1, D2, D3, …, DN} and one approximation 

level AN [6, 9, 23]. The inverse process is adopted to reconstruct the signal in the 

time-domain [18]. The approximation and detailed coefficients are up-sampled 

first and then convolved with reconstruction filters hr[n] and gr[n] [7, 9, 23]. The 

primary applications of DWT are (a) discontinuity detection, (b) signal 

compression, (c) denoising, and (d) signal estimation [9]. MATLAB toolboxes 

facilitate obtaining the wavelet transform and are used in the present study. 
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3 Methodology 

3.1 Experimental set-up and data acquisition system 

The AEPD time-domain signals used in this paper for analysis are generated 

in an experimental setup having a point-plane electrode system available in the 

central power research institute (CPRI), Bangalore, India. The experimental tank 

is made of mild steel and has the dimensions 1.1 m × 1.1 m × 1.1 m. EHV grade 

transformer oil is filled in the tank having wall thickness of 5 mm. The tip 

diameter of the point electrode is 30 µm, and a gap distance of 0.42 m is maintained 

between the point and bottom of the tank treated as the plane electrode [24, 25]. 

The AE workstation is a DSP based 16 channel data acquisition system. It 

consists of 4 channel DSP boards of 4 numbers for data acquisition from 16 

piezoelectric AE sensors (model DT15i of M/s PAC, USA). Each AE sensor has 

a frequency range of 10 kHz − 1 MHz and a resonant frequency of 150 kHz, with 

an integrated preamplifier of 40dB gain. These 16 sensors are mounted on the 

outer wall of the experimental transformer tank using the acoustic couplant. The 

experimental setup of the transformer test tank having a point-plane electrode 

system is shown in Fig. 1. The current study uses a high voltage source of 0 − 75 kV 

(and 1.1 A) rating to generate PDs. 

 

Fig. 1 – Experimental setup of transformer oil tank  

with point-plane electrode system to generate PD. 

 

Figs. 2a − e illustrate the 5 AEPD signals employed in this analysis. These 

are the time domain signals obtained from the experimental set-up. These signals 

are obtained by randomly placing the sensors on the walls of the transformer 

model, which, in general, simulates an actual situation. Not too much can be 

inferred from these time domain signals. However, techniques like DWT analysis 

can give additional insights. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Fig. 2 – Five typical acoustic emission partial discharge (AEPD)  

signals in time-domain used in the present analysis. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Fig. 3 – Fourier spectrum of 5 acoustic emission partial  

discharge (AEPD) signals used in the present analysis. 
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Figs. 3a − e present the Fourier spectrum of the 5 AEPD signals employed in 

this study. Spectral analysis reveals that the predominant energy is within the 

frequency range of 50 kHz to 250 kHz. Notably, this frequency range remains 

consistent across all 5 samples. Adhering to the Nyquist criteria, a minimum 

sampling frequency of 500 kHz is necessary for a maximum detectable frequency 

of 250 kHz. Hence, a sampling frequency of 1 MHz has been selected, and each 

signal length is of 1024 samples. 

3.2 Analysis using DWT 

The present work is limited to choosing a suitable mother wavelet for the 

DWT of AEPD signals. The mother wavelets of the Daubechies, Coiflets, 

Symlets, and Bi-orthogonal families were considered for analysis and are listed 

in Table 1 [21]. These 36 mother wavelets are used in comparing their 

performance in AEPD analysis. A brief introduction to these wavelet families is 

given in [9]. The performance evaluation and selection of suitable mother 

wavelets for DWT are made by subjecting the obtained DWT coefficients to (a) 

reconstruction, (b) denoising, and (c) compression, which are explained in the 

subsections. Relating the sample length of the signal ns with that of the filter 

length of the wavelet nw an appropriate number of levels n for the signal 

decomposition can be chosen using (2) [7, 22, 23]. 

 2fix log  
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n

  
=    −  

. (2) 

Table 1 

Mother wavelets considered in AEPD analysis. 

Daubechies Symlet Coiflet Bi-Orthogonal 

db1 sym1 coif1 bior1.1 bior3.3 

db2 sym2 coif2 bior1.3 bior3.5 

db3 sym3 coif3 bior1.5 bior3.7 

db4 sym4 coif4 bior2.2 bior3.9 

db5 sym5 coif5 bior2.4 bior4.4 

db6 sym6  bior2.6 bior5.5 

db7 sym7  bior2.8 bior6.8 

db8 sym8  bior3.1  

3.2.1 Reconstruction 

In the reconstruction, it is attempted to determine the ability of the mother 

wavelet to transform the signal from the time-domain to the wavelet-domain 

without losing information (by preserving its features). Each mother wavelet is 

chosen to decompose the AEPD signal into DWT coefficients. Then these DWT 

coefficients of the decomposed signal are subjected to the inverse discrete 

wavelet transform (IDWT) to get back the time-domain signal, called the 
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reconstructed signal [9]. The difference between the original signal SO and the 

reconstructed signal SR gives the error in representing the signal in the wavelet-

domain. This numerical experiment is conducted with each mother wavelet (the 

36 listed in Table 1). As described in Section 3.1, 5 AEPD test (sample) signals 

are utilized for DWT analysis in this study. The mother wavelet that results in the 

least error (between the original and reconstructed signal) is considered the best 

for the AEPD signal analysis. This process is depicted in Fig. 4 by a block 

diagram. 

 

Fig. 4 – Block diagram depicting error quantification process to assess the performance 

of a mother wavelet in representing the signal in the wavelet-domain. 

 

The ability of the mother wavelet to represent the signal accurately in the 

wavelet-domain is quantified using metrics (a) the root mean square difference 

(RMSD) and (b) relative error in energy (REE) as defined in (3) and (4), 

respectively [23]. 
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In (3), S̅O denotes the mean value of the original signal SO, and N denotes the 

number of sampling instants in the time-domain (N = 1024 in the present case). The 

outcome of this numerical experiment is given in the results under Subsection 4.1. 

3.2.2 Denoising 

The denoising aspect of DWT is essential when the signals are acquired in a 

harsh, noisy environment. Different types of interference and noise that can be 

encountered during a live PD measurement are (a) discrete spectral interferences 

(DSI), (b) periodic pulse-shaped interferences, (c) stochastic (random) noise, and 

(d) white noise [11, 12, 19, 26]. The PD signals in the acoustic form (AEPD) are 

less prone to noise than are the PD signals in their electric form [5]. However, 
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there can be some acoustic noise in AEPD signals and thus they need to be pre-

processed in the wavelet-domain. After performing DWT and denoising, the 

signal may have varying degrees of noise traces specific to each mother wavelet. 

Hence the mother wavelet that performs best in coping with noisy signals needs 

to be evaluated. 

The 5 AEPD test signals used in the analysis are collected in the laboratory 

environment with very little (or no) noise. Hence, in the present work, artificially 

simulated additive white gaussian noise (AWGN) is added to the noiseless test 

signal SO generated in the experimental setup for the sake of comparing wavelet 

performance. To the AEPD test signal, the AWGN of 10 percentage energy is 

added, resulting in a noisy signal SN having a signal-to-noise ratio (SNR) of 10dB 

[21]. This noisy AEPD signal SN in time-domain is decomposed using a mother 

wavelet with a corresponding level of decomposition as given in (2). This results 

in noisy DWT coefficients. After the process of denoising, these denoised DWT 

coefficients are subjected to IDWT, and the resultant reconstructed signal SD is 

compared with the original signal SO [10]. The process adopted for the purpose 

of denoising-based analysis is described by a block diagram as shown in Fig. 5. 

The denoising performance is evaluated by comparing the signals SO and SD 

using the metrics (a) signal-to-noise ratio (SNR) and (b) energy ratio (ER), as 

given by (5) and (6), respectively. 

 

Fig. 5 – Block diagram depicting performance assessment of a  

mother wavelet while AEPD signal denoising (in wavelet-domain). 
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To demonstrate how the signal and noise manifest themselves differently in 

the wavelet-domain, the DWT is applied to the test-AEPD signal and noise 

separately using ‘sym8’ as the mother wavelet with a 6-level decomposition (as 
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given in (2) for a signal of ns = 1024 samples and wavelet filter length of nw = 16). 

This is only a typical example case. For each mother wavelet, the appropriate 

decomposition level n is identified based on its filter length nw. The absolute 

values of their DWT coefficients obtained by MRA are plotted on the x-axis 

separately, as shown in Fig. 6. The vertical lines represent the partition of 

coefficients into sub-bands A6, D6, D5, D4, D3, D2, and D1, from left to right, 

as described in Section 2.2 of the wavelet transform. As seen from Fig. 6, the D2 

and D3 sub-bands contain the most signal information, whereas the noise is 

almost uniformly spread across all the sub-bands. These attributes are used in 

implementing denoising in two different ways: (a) amplitude thresholding and (b) 

frequency thresholding, as described in Sections 3.2.2.1 and 3.2.2.2, respectively. 

 

Fig. 6 – DWT coefficients of a test AEPD signal and AWGN signal  

across frequency sub-bands (obtained using ‘sym8’). 

 

3.2.2.1 Amplitude thresholding 

The detailed DWT coefficients obtained by MRA were subjected to 

amplitude soft-thresholding. The approximation sub-band coefficients are 

retained, as they contain the global information. Soft-thresholding is an exercise 

in which coefficients whose absolute values are lower than the threshold λ are 

first set to zero, and then one further shrinks the non-zero coefficients towards 

zero [7, 10]. As the DWT decomposition by MRA results in various levels (sub-

bands), level-dependent soft-thresholding is adopted [12]. The threshold value is 

calculated using the empirical (7) for each level individually [21, 22]. 

 
22log ( )j j jN = . (7) 

Here Nj denotes the length of the coefficients in the jth level and σj (which is 

equal to dj /0.6745) denotes the standard deviation of the noise at that level, where 
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dj is the median absolute deviation (MAD) of the coefficients present in the 

particular jth level [22]. The term α depends on the extent of denoising required 

and is set to 0.05 by the trial-and-error method. The resulting denoised DWT 

coefficients are used to reconstruct the time-domain signal SD by IDWT [15, 22]. 

The reconstructed signal SD is compared with SO using the performance indicators 

SNR and ER as given in (5) and (6) respectively. 

3.2.2.2 Frequency thresholding 

It is observed from Fig. 6 that most of the AEPD signal’s information is in 

the D2 and D3 sub-bands, and the noise signal is widely spread among all the 

sub-bands. A proposed denoising approach eliminates the DWT coefficients 

other than D2 and D3 sub-bands. Approximation sub-band coefficients are 

retained as they contain the global information. The IDWT is applied to the 

retained DWT coefficients to reconstruct the denoised signal SD in the time-

domain. The reconstructed signal SD is compared with SO using the performance 

indicators SNR and ER as given in (5) and (6) respectively. 

The outcome of the numerical experiments related to denoising is given in 

the results under Subsection 4.2. 

 

(a) 

 

(b) 

Fig. 7 – (a) Signal in time domain before and after denoising using amplitude 

thresholding; (b) Signal in frequency domain before and after denoising using 

amplitude thresholding; 
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(c) 

 

(d) 

 

(e)

 

(f) 

Fig. 7 – (c) Residue between the noisy and denoised signals in the time domain using 

amplitude thresholding; (d) Signal in time domain before and after denoising using 

frequency thresholding; (e) Signal in frequency domain before and after denoising 

using frequency thresholding; (f) Residue between the noisy and denoised signals  

in the time domain using frequency thresholding. 
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Fig. 7 illustrates the AEPD signal’s representation before and after undergoing 

denoising via amplitude thresholding, portrayed in both the time domain (Fig. 7a) 

and frequency domain (Fig. 7b). The residue between the noisy and denoised 

signals in the time domain is presented in Fig. 7c. Furthermore, the application 

of frequency thresholding for denoising is depicted in both the time domain (Fig. 

7d) and frequency domain (Fig. 7e), along with the residue between the noisy and 

denoised signals in the time domain (Fig. 7f). The ‘db8’ mother wavelet with a 

6-level decomposition is used for this example. 

3.2.3 Compression 

Compression is a process of storing the information of a signal in a reduced 

data volume. Compression is significant when the data size is too large. The DWT 

helps in compressing the data set. The compressed DWT coefficients in the 

wavelet-domain should retain all the valuable information of the original signal. 

Each mother wavelet does this differently. The process adopted for the compression 

-based analysis is described by a block diagram, as shown in Fig. 8.  

 

Fig. 8 – Block diagram depicting performance assessment of a mother wavelet  

while AEPD signal is compressed (in wavelet-domain). 

 

DWT is applied to the original AEPD signal SO, resulting in DWT 

coefficients. The detailed coefficients are subjected to universal hard-thresholding, 

where the coefficients are compared against a predetermined threshold value. 

Hard-thresholding is a process in which the coefficient values are set to zero if 

their absolute values are less than the threshold value, and the remaining 

coefficients are retained. The approximation coefficients are not disturbed as they 

contain the signal’s global properties. After thus compressing the coefficient set 

in the wavelet-domain, the resulting DWT coefficients are subjected to IDWT to 

reconstruct the compressed signal SC in the time-domain. 

The compression performance is evaluated by comparing the signals SO and 

SC using the metrics (a) compression scores (CS), (b) ER, and (c) RMSD given 

by (8) − (10), respectively [23]. 

 
( )100 Number of coefficients set to zero by thresholding

Total number of coefficients
CS = , (8) 



S.R. Vippala, G.S. Punekar, K. Chemmangat, B. Tangella 

178 

 
( )

( )

2

1

2

1

 

N

n

N

n

n
ER

n

=

=

=




C

O

S

S
 , (9) 

 
( ) ( )( )

( )( )

2

1

2

1

N

n

N

On

n n
RMSD

n S

=

=

−
=

−





O C

O

S S

S

. (10) 

In (10), S̅O denotes the mean value of the original AEPD signal SO. The 

outcome of the numerical experiments related to compression is given in the 

results section under Subsection 4.3. 

3.2.4 Energy based final selection 

The mother wavelet that results in the highest concentration of energy within 

sub-bands can be selected as the most suitable mother wavelet [23]. This concept 

is used as the overriding criterion to finalize the choice from among the wavelets 

chosen from (i) reconstruction, (ii) denoising, and (iii) compression described in 

Sections 3.2.1 to 3.2.3. 

The sampling frequency in the present study is 1 MHz. Therefore, the 

maximum detectable frequency is 500 kHz. The Fourier spectrum of the signal 

reveals that most of the energy is present in the frequency range of 62.5 kHz to 

250 kHz. It is noticed that for all 5 samples (Section 3.1), the frequency range is 

the same. The specific frequency ranges of the sub-bands of DWT (Section 2.2) 

applicable to the present study are shown in Table 2. It is observed from Table 2 

that the frequency range 62.5-250 kHz corresponds to D2 and D3 sub-bands. This 

implies that most of the energy is concentrated in these sub-bands. A similar 

inference can be drawn from Fig. 6. Hence the mother wavelet that results in the 

highest concentration of energy within sub-bands D2 and D3 can be selected as 

the most suitable mother wavelet for all three performances individually [23]. 

The outcome of the numerical experiments related to the energy-based final 

selection is given in the results section in Subsection 4.4. 

Table 2 

Sub-bands and associated frequencies. 

Decomposed 

components 

Frequency range [kHz] 

(Sampling frequency: 1 MHz) 

D1 250 − 500 

D2 125 − 250 

D3 62.5 − 125 

D4 31.2 − 62.5 

D5 15.6 − 31.2 

D6 7.81 − 15.6 

A6 0 − 7.81 
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3.3 Flow chart of shortlisting and final selection  

of mother wavelet for AEPD signal analysis 

This study evaluated 36 mother wavelets belonging to 4 different families. 

The best mother wavelet from each family was shortlisted for all three 

performances (reconstruction, denoising, and compression) based on appropriate 

metrics. Further, based on energy criteria, the best mother wavelets are obtained 

from among all the families for all three performances mentioned above. The 

flow chart describing the selection process of the most suitable mother wavelet 

for analysis of AEPD signals in the wavelet domain is given in Fig. 9. 

 

Fig. 9 – Flow chart describing the selection process of  

mother wavelet in AEPD signal analysis. 
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4 Results 

The decomposition and reconstruction of AEPD signals for analysis are 

performed in MATLAB. The “eps” in MATLAB during these numerical 

experiments is 2.22e-16. In MATLAB, "eps" refers to the precision of floating 

numbers. The numerical experiments conducted to compare the metrics RMSD 

and REE indicate a 5-order difference. Such a considerable difference motivates 

choosing an appropriate mother wavelet for DWT analysis of AEPD signals. 

4.1 Selection based on reconstruction 

Assessing the ability of a mother wavelet to represent the signal accurately 

in the wavelet-domain was described in Section 3.2.1. This comparison is 

quantified using the metrics (a) root mean square difference (RMSD) and (b) the 

relative error in energy (REE) as defined in (3) and (4), respectively. The average 

values (RMSD and REE) of 5 test signals are used in the analysis. The best 

member of each wavelet family (listed in Table 1) which results in the least error 

are given in Table 3. 

Table 3 

Best performing mother wavelets of each family in terms of ‘reconstruction’. 

Mother wavelet % RMSD % REE 

db1 3.72e-14 4.89e-14 

sym1 3.73e-14 4.89e-14 

coif3 2.24e-10 1.19e-10 

bior2.4 3.48e-14 3.94e-14 
 

4.2 Selection based on denoising 

The procedure of evaluating the denoising suitability of the mother wavelet 

was described in Section 3.2.2. This comparison is quantified using the metrics 

(a) signal-to-noise ratio (SNR) and (b) energy ratio (ER) given by (5) and (6), 

respectively. The average values (SNR and ER) of 5 test signals are used in the 

analysis. The mother wavelet with the highest SNR and % ER nearest to 100 is 

considered the best-performing. 

4.2.1 Selection based on amplitude thresholding 

In denoising using amplitude thresholding (described in Section 3.2.2.1), the 

best member of each wavelet family (listed in Table 1) is taken to be that which 

results in the highest SNR and a % ER near 100. They are given in Table 4. In 

general, denoising should result in the improvement of the SNR. It is noticed that 

SNR values have improved above 13dB for all the mother wavelets considered 

from the initial added value of 10dB (AWGN). From % ER values, it is observed 

that more than 94 % of the energy of the test signal is retained in the denoised 

signal for all the mother wavelets under study. 
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Table 4 

Best performing mother wavelets of each family in  

terms of ‘amplitude threshold based denoising’. 

Mother wavelet SNR [dB] % ER 

db8 14.8 95.3 

sym6 16.0 94.8 

coif4 14.9 95.3 

bior1.5 15.0 95.6 
 

4.2.2 Selection based on frequency thresholding 

The denoising using frequency thresholding was described in Section 

3.2.2.2. This proposed method eliminates the DWT coefficients in the sub-bands 

other than D2 and D3. This method may result in the reduction of signal content 

to some extent. Hence, SNR with few mother wavelets was observed to be 

reduced to around 8dB. On the contrary, in most cases, the SNR has increased 

above the initial added value of 10dB (AWGN). The best member of each wavelet 

family (listed in Table 1), namely, that which results in the highest SNR and a % 

ER near 100, is given in Table 5.  

Table 5 

Best performing mother wavelets of each family in  

terms of ‘frequency threshold based denoising’. 

Mother wavelet SNR [dB] % ER 

db5 26.9 100.3 

sym4 22.7 99.4 

coif2 21.7 99.8 

bior3.5 28.9 99.9 
 

4.3 Selection based on compression 

Assessing the compression ability of the mother wavelet in the wavelet-

domain was described in Section 3.2.3. This comparison is quantified using the 

metrics (i) compression scores (CS), (ii) energy ratio (ER), and (iii) root mean 

square difference (RMSD) as defined in (8) − (10), respectively. The average 

values (CS, ER, and RMSD) of 5 test signals are used in the analysis. The best 

member of each wavelet family (listed in Table 1), namely, that which results in 

the highest % ER and least % RMSD, is given in Table 6. On average, 80% of 

the compression score is achieved with standard deviation less than 4, which is 

quite satisfactory. It is noticed that the best members for compression capability 

are the highest-order wavelets in their corresponding families. This is in line with 

the vanishing moments property of the mother wavelet. The vanishing moment 



S.R. Vippala, G.S. Punekar, K. Chemmangat, B. Tangella 

182 

of a wavelet is the index number postfixed to the family name of the wavelet  

(for example, the vanishing moment of the ‘sym6’ wavelet is 6). The higher the 

vanishing moment, the higher the order of the polynomials that can be well 

approximated. This results in as many as zero detailed-coefficients and as few 

approximation-coefficients as possible. Eventually, this phenomenon results in 

higher compression scores. 

Table 6 

Best performing mother wavelets of each family in terms of ‘compression’. 

Mother wavelet % ER % RMSD 

db8 97.0 17.2 

sym8 96.9 17.4 

coif5 97.1 16.9 

bior6.8 96.4 18.3 

 

4.4 Energy based final selection 

The best members of each family for all three types of performances 

(reconstruction, denoising, and compression) are gathered and given in Table 7. 

Table 7 

Shortlisted mother wavelets for AEPD signal analysis  

based on the three types of performances. 

 

Family name of mother wavelet 

Daubechies Symlets Coiflets Bi-orthogonal 

Reconstruction db1 sym1 coif3 bior2.4 

Denoising 
db5 sym4 coif2 bior1.5 

db8 sym6 coif4 bior3.5 

Compression db8 sym8 coif5 bior6.8 

 

The mother wavelet that results in the highest concentration of energy within 

the desired sub-bands should be selected as the most suitable mother wavelet [22]. 

This overriding criterion was described in Section 3.2.4. In order to apply this 

criterion, the energy present in the D2 and D3 sub-bands (as a percentage of the 

energy of their DWT coefficients) is computed for all 5 test signals, and their 

average values are compared. The mother wavelets ‘coif3’, ‘coif4’, and ‘coif5’ 

turns out to be the best mother wavelets across all the families collectively for 

reconstruction, denoising, and compression purposes, respectively. These are 

listed in Table 8, along with the energy content of their D2 and D3 sub-bands. 
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Table 8 

Suitable mother wavelets based on D2 and D3 sub-band energy criterion. 

 
Mother wavelet with highest 

energy in the D2, D3 sub-bands 
% Energy 

Reconstruction coif3 96.5 

Denoising coif4 96.7 

Compression coif5 97.2 

 

5 Conclusion 

Selection of the most suitable mother wavelet for DWT analysis of AEPD 

signals is performed quantitatively using the “accuracy of wavelet decomposition 

results”. The performance of 36 mother wavelets of 4 different families is 

compared by conducting numerical experiments using AEPD test signals 

collected in the laboratory. 

– A set of best-performing mother wavelets are identified from the four 

families (Daubechies, Symlets, Coiflets, Bi-orthogonal), and three types of 

performances (reconstruction, denoising, and compression). 

– Further, based on the % energy criteria, ‘coif3’, ‘coif4’, and ‘coif5’ are 

identified as the best-performing mother wavelets for reconstruction, 

denoising, and compression, respectively. 

– Specific to the AEPD signal analysis, the representation in the DWT- 

domain is of utmost importance. Hence, the coif3 mother wavelet, whose 

performance is better in signal reconstruction, is better suited for AEPD 

signal analysis. 

– The mother wavelet selection based on “accuracy of wavelet decompo-

sition results” is presented in this work probably for the first time. 
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