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Abstract: In this paper, we study an uplink power-domain non-orthogonal 

multiple access (PD-NOMA) system, in which 2K+1 users are served. The user 

clustering process based on High-High/High-Low algorithm precedes the 

utilization of the data-rate based power allocation algorithm. Channels are 

characterized by Fisher-Snedecor composite fading model interpreted as model 

with a high level of generality. The influence of different fading/shadowing 

channel conditions, number of users and their positions is portrayed through the 

numerical results of data sum rate of the studied PD-NOMA system. 
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1 Introduction 

Non-orthogonal multiple access (NOMA), compared to orthogonal multiple 

access (OMA) approach, maintains user fairness, boosts spectral efficiency, and 

facilitates large mobile connectivity. Therefore, NOMA is seen as a crucial 

technology supporting the 5G and beyond networks [1, 2]. NOMA is mostly 

implemented as either power-domain NOMA (PD-NOMA) or code-domain 

NOMA (CD-NOMA). The PD-NOMA, discussed in this paper, is easier to 

implement in an existing network and improves spectral efficiency without using 

additional bandwidth [3]. Namely, the PD-NOMA enables simultaneous 

multiuser access to the available frequency and time resources, whereby 

multiplexing is accomplished by assigning different levels of power to the users 

according to their channel conditions, all in an effort to maximize system gain. In 

such multiple access, the interference is disadvantage that has to be overcome by 
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successive interference cancellation (SIC). The complexity of the receiver is 

increased by the SIC, but giving up orthogonality brings the benefit of high 

connectivity and spectral efficiency [4]. In CD-NOMA, non-orthogonal 

codebooks/sequences are used as primary tool for multiuser separation. Authors 

in [5] show that CD-NOMA achieves better sum-rate in comparison to PD-

NOMA, at the cost of increased complexity. Therefore, one of the research 

challenges is to design low complexity CD-NOMA receiver. In addition, NOMA 

can be included in existing advanced technologies such as multiple-input 

multiple-output (MIMO), cooperative relay networks, device-to-device (D2D), 

heterogenous system, etc. [6].  

In the PD-NOMA, power allocation and user pairing issues should be taken 

into account. Namely, appropriate selection of power levels allocated to the users 

and decision which users can share the system resources allows the base station 

(BS) to control data rate and user fairness. Actually, to achieve the best possible 

performance of PD-NOMA, it should be analyzed all possible combinations of 

clustered users and their particular power levels, which is definitely infeasible in 

computational terms [7]. Therefore, some works related to PD-NOMA are 

focused on investigation of a sub-optimal solution for both user clustering and 

power allocation. All pairing algorithms, in general, can be classified into two 

categories: those that pair 2K users in groups of two users [8] and those that pair 

2K+1 users in groups of one, two, or three users [9, 10]. Recently, some adaptive 

user clustering methods are proposed in [7, 11]. Two distinguished power 

allocation algorithms exist: fixed and dynamic. The fixed power allocation model 

allocates the same power levels to users without taking into account the channel 

conditions. The algorithm complexity is very low and, consequently, the realized 

system performance is poor. The power level allocated to the user can be changed 

in the dynamic manner, according to the instantaneous channel gain. Low-

complex dynamic power allocation algorithms can be found in [12, 13]. In order 

to meet demands for high-capacity in future mobile communication systems, a 

new dynamic algorithm is proposed in [14]. Unfortunately, its complexity makes 

practical implementation difficult in a multiuser case. Artificial intelligence based 

methods for downlink PD-NOMA are presented in [15], to address the 

computational complexity issue while offering near-optimal performance.  

Since the mobile radio propagation channel causes fundamental limits to the 

wireless communication system performance, its accurate modeling is crucial for 

the system design. In practice, Rayleigh, Rice, Nakagami-m, and Hoyt are 

commonly used fading models, while shadowing is usually modeled statistically 

by lognormal distribution. Analysis of PD-NOMA over aforementioned fading 

channels can be found in the open technical literature [9, 16, 17, 18, 19]. The 

Fisher-Snedecor, F, distribution represents a tractable composite fading model 

(incorporating the effects of both fading and shadowing) that shows excellent fit 

to the experimental data of D2D communication in both the outdoor and indoor, 
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better than generalized-K model [20]. In addition, F distribution can be simplified 

to Nakagami-m, Rayleigh, and one-sided Gaussian fading models. Therefore, 

experimental and theoretical advantages of F distribution are undisputed. 

In this paper, we analyze the uplink PD-NOMA system serving 2K+1 users 

over composite F fading channel. Two-user clusters, in total number of K, are 

formed using simple based High-High/High-Low algorithm, so only one user is 

left without pairing. Using the analytical expressions for the outage probabilities 

(OPs) of users operating in the two-user PD-NOMA system obtained in [21, 22] 

and the OP of OMA user, the power allocation algorithm intended to maximize 

sum-rate is applied [23].  

2 Problem Set 

In the system under analysis, 2K+1 users are distributed uniformly within a 

cell of radius R and grouped in the clusters consisting of one or two users. The 

cluster composed of large number of users degrades a system performance due to 

a residual interference, more complex hardware and increased power 

consumption [24]. Users in the cluster simultaneously transmit their information 

symbols to the BS over a same resource. It is assumed that each cluster is assigned 

a single resource block (RB) and that each user is equipped with a single antenna.  

The signal received at the BS in an uplink PD-NOMA system is defined as  

 
1

,
l

i i i i

i

y g Ph s n


   (1) 

where l is the number of users in the cluster, 
is  is the information symbol, 

ih  is 

the channel coefficient and 
iP  is the transmit power of i-th user in the cluster. A

ig  represents distance-based path gain between the BS and the i-th user in the 

cluster and it can be evaluated as 
2 2 2 2

0 [ ( )]i i ig g H x y    , with 
0g  being the 

reference gain at the reference distance and   is the path-loss exponent. The 

parameters 
ix  and 

iy  denotes the coordinates of the user’s location, and H is the 

BS antenna’s height. Further, the parameter n denotes additive white Gaussian 

noise with zero-mean and variance 2 . It is assumed that  2
1iE s  . 

Generally, when two users are clustered for uplink communication scenario, 

the user with the highest channel gain is typically first decoded. If we assume that 
2 2

1 1 2 2g h g h , after decoding 
1s , which is sent by cell-center user (user 

positioned close to the center of the cell where BS is mounted), the BS subtracts 

1 1 1 1g P h s  from the received signal y. Then 
2s  sent by cell-edge user (user located 

far from BS) is decoded. For scenario under consideration, it holds 
1 2P P , 
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respecting following identities 
1 1P a P , 

2 2P a P , 
1 2a a , 0 1ia  , and 

1 2 1a a  . Parameter P represents the total power per RB. According to the 

previously proposed model set, the received signal-to-interference-noise ratio for 

the i-th channel, can be defined as 

 

2
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 (2) 

If the user is not grouped in the cluster, all total power is assigned to it, since 

it is treated as OMA user. Consequently, the interference does not exist, i.e. SIC 

is not needed. Then, the received signal-to-noise ratio (SNR) for that user 

channel, can be defined now as 

 

2

, 2
, 1

i i

i OMA

g P h
i  


. (3) 

The detailed derivation process of the OPs of the cell-center (i = 1) and the 

cell-edge (i = 2) users in two-user uplink PD-NOMA over F fading channels can 

be found in [21] as 
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and 

 

   

   

,2 ,2 ,1 ,1

22 ,21,2

2,2

22 2 2 2 2

1 1

1 ,11
1 ,

,0

out th out th

th

P P

km
G

mm k g k

      

  
         

 (5) 

where ,th i  is the threshold, ,

, ,( 2 1)c iR

c i th iR     is the target rate, 
im  defines the 

fading depth, 
ik  defines the shadowing sharpness and 

2

i iP    defines the 

average SNR of the i-th channel. The ,

,

m n

p qG z
 
 

 
 denotes Meijer’s G function 

and    denotes Gamma function [25]. 

The OP for OMA user over F composite fading channel is obtained as [1]: 
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where treshold is now defined as ,12

,1 2 1cR

th   and average SNR is 
2

1 .P     

3 Resource Allocation 

It is not recommended to deploy NOMA on all users at once due to overhead 

in channel feedback information and error propagation, in addition to the other 

reasons already mentioned [26]. Therefore, users in the cell are grouped into 

clusters and users in the cluster share same RB. The system performance of PD-

NOMA is highly dependent on both clustering model and power allocation. To 

accomplish the best performance of PD-NOMA it would be necessary to conduct 

exhaustive search which would be infeasible in computational terms. Therefore, 

some sub-optimal solutions for both problems, user clustering and power 

allocation, should be designed. 

The detailed overview of user scheduling algorithms can be found in [27]. 

More complex scheduling algorithms, determined for odd number of users in the 

cell, can be found in [9]. In this paper we apply simple scheduling algorithm 

based on High-High/High-Low pairing algorithms [27]. These algorithms can be 

explained through the steps below [1]: 

1. Arrange users in descending channel gain order. 

2. Divide users into following groups: First group consists of users with 

highest channel gain (the first K users  1 2, , , Kh h h ) and Second group 

consists of users with lowest channel gain (the last K users 

 2 3 2 1, , ,K K Kh h h   ). 

3. Form the K two-user clusters as: Paring the first user of First group with 

the first user of Second group, and so on     1 2 2 3, , , ,K Kh h h h  – 

High-High; Paring the first user of First group with the last user of Second 

group, and so on     1 2 1 2 2, , , ,K Kh h h h  – High-Low. 

4. The (K+1)th cluster consists of one user, (K+1)th user. 

After users are aggregated into the clusters, the power levels have to be 

assigned to them. These power levels are obtained to maximize the sum data rate, 

which is one of the most important performance metrics [23] 

 
    ,1 ,1 1 ,2 ,2 2

1 2
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,

sum c out c outR R P P R P P

P P P

         

 

 (7) 
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that holds when two users are grouped in the cluster.  

Further, all power from the RB is allocated to the user in (K+1)-th cluster. In 

NOMA systems, power allocation significantly affects the total rate. Therefore, 

in the literature, dynamic power allocation strategies are very often designed to 

maximize achievable rate [28, 29]. 

To guarantee quality of service to users far away from BS, authors in [10] 

treats them as OMA. Therefore, in this paper we modify algorithm proposed in 

[1, 27] in following way: 

1. Arrange users in descending channel gain order. 

2. Divide users into following groups: First group consists of users with 

highest channel gain (the first K users  1 2, , , Kh h h ) and Second group 

consists of users with lower channel gain (the second K users 

 1 2 2, , ,K K Kh h h  ). 

3. Form the K two-user clusters as: Paring the first user of First group with 

the first user of Second group, and so on     1 1 2 2, , , ,K Kh h h h  – 

High-High; Paring the first user of First group with the last user of Second 

group, and so on     1 2 2 2 1, , , ,K Kh h h h   – High-Low. 

4. The (K+1)th cluster consists of the last user, (2K+1)th user. 

4 Results and Discussion 

In this section, we conduct the performance analysis of the PD-NOMA 

system under consideration. The following scenario is assumed: all users are 

uniformly positioned in a 200 m radius circle; the BS’s height is 100 m and 3D 

coordinates defining its position are (0,0,10) ; the 3D coordinates determining 

the position of the cell-center and the cell-edge users are 
1 1( , ,0)x y  and 

2 2( , ,0),x y  

respectively. Parameters 
0 50dBg   and 3   define path loss component; three 

different wireless fading scenarios (case A, case B, and case C) are supposed 

(Table 1). 

Table 1 

Characterization of wireless channel. 

Case A 
m1 = 1, m2 = 1, k1 = 12, k2 = 3;   1st ÷ K-th clusters 

m1 = 1, k1 = 3;   (K+1)-th cluster 

Case B 
m1 = 1, m2 = 1, k1 = 1, k2 = 1;   1st ÷ K-th clusters 

m1 = 1, k1 = 3;   (K+1)-th cluster 

Case C 
m1 = 3, m2 = 1, k1 = 12, k2 = 3;   1st ÷ K-th clusters 

m1 = 1, k1 = 3;   (K+1)-th cluster 
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Fig. 1 – Sum data rate versus  ((K+1)th user – OMA user, 2K+1 = 21). 

 

Fig. 1 depicts the achieved sum data rate versus the SNR, 
2P   , for the 

case of twenty one users uniformly located in the cell over different wireless 

environments in which all users are clustered in the analogue way as in [1]. 

Results presented in Fig. 1 demonstrate nearly identical sum rate performance of 

PD-NOMA system for both considered pairing schemes, with very slightly 

advantage in favor of High-High-based algorithm. This advantage can be 

explained with constant enough large difference in the channel gain between 

paired users. Moreover, the realized high sum rate in the case of utilization of 

High-Low algorithm is the consequence of the applied power allocation 

algorithm designed to achieve maximum sum data rate. Better conditions in the 

channel, described by higher values of parameters k and m (light shadowing and 

less severe fading conditions), guarantee that for moderate and high SNR values, 

the system provides higher data rates. In high SNR regime, maximum sum rate,

max ,1 ,2 ,1( )sum c c cR K R R R   , is almost achieved for all considered channel 

conditions. Even if we use users’ position in the cell differently from [1], the 

drawn concluding remarks from Fig. 1 are the same as in [1]. Different user 

location distribution in the cell leads to a bit lower realized sum rate than in the 

case considered in [1]. 



A. Panajotović, J. Anastasov, N. Sekulović, D. Milović, D. Milić 

156 

Fig. 2 is depicted to analyse influence of different number of users in the cell 

on the capacity performance.  

Depicted results show that previous mentioned conclusions are relevant for 

any number of users which should be served by BS. Commonly, achieved system 

rate is higher for higher number of users in the cell (compare Figs. 1 and 2).  

 

Fig. 2 – Sum data rate versus  ((K+1)th user – OMA user, 2K+1 = 15). 

 

Comparison of the origin and modified High-High/High-Low based 

algorithms for twenty one and fifteen users is shown in Figs. 3 and 4, respectively.  

Authors in [10] treat users closest to the cell edge as OMA users, which in 

our applied algorithms do not improve the capacity performance of the examined 

PD-NOMA system. Actually, higher sum rate is achieved for the case when OMA 

user is (K+1)th user in comparison to the case when it is (2K+1)th user.  

If we compare Fig. 1 from this paper with Fig. 1 from [1], it is obvious that 

the achieved PD-NOMA system capacity depends on users’ position. Therefore, 

in order to confirm the concluding remarks and make them general we do more 

fairly approach shown in Fig. 5. We analyze the considered system in average 

manner. Fig. 5 confirms all conclusions from results depicted in Figs. 1 – 4. 
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(a) 

 

(b) 

Fig. 3 – Comparison of the origin and modified clustering algorithms for twenty one 

users: (a) High-High based algorithm; (b) High-Low based algorithm. 
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(a) 

 

(b) 

Fig. 4 – Comparison of the origin and modified clustering algorithms for fifteen  

users: (a) High-High based algorithm; (b) High-Low based algorithm. 
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(a) 

 

(b) 

Fig. 5 – Average sum rate for twenty one users:  

(a) (K+1)th user – OMA user; (b) (2K+1)th user – OMA user. 
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6 Conclusion 

This paper have shown the extended analysis of uplink PD-NOMA system 

over F fading channel, in which 2K+1 users are clustered using origin High-

High/High-Low–based algorithm and its modification followed with power 

allocation scheme with the aim to maximize sum data rate as relevant 

performance metric. The F fading model has been utilized as accurate model used 

to describe the combined effects of multipath fading and shadowing, and also 

attractive for modern communication systems. Obtained results have shown that 

from the sum-rate point of view, a light advantage is in favor of the origin High-

High-based algorithm regardless of the environmental conditions, number of 

users in the cell and their position. 
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