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Abstract: In tomato production, one of the most significant problems is the 

identification of Tomato Leaf Disease (TLD). Plant leaf disease is the primary 

factor that influences both the quality and quantity of crop production. India holds 

the second position in tomato making. However, multiple diseases contribute to 

the decline in the quality of tomatoes and the decrease in crop yield. Hence, it is 

important to accurately categorize and diagnose the tomato plant leaf infection. 

The productions of tomatoes are impacted by many leaf diseases. Early 

recognition of the diseases helps to reduce the disease infection and improve the 

yield of crops. Certain diseases are identified and шlassified using several 

methods. Therefore, the TLD classification and identification model is developed 

to solve the above problems. The images related to tomato leaves are aggregated 

in the initial phase through online sources. Then, the images are forwarded to the 

pre-processing phase. Further, the pre-processed image is given to the 

segmentation process, where the Adaptive Fuzzy C-Means (AFCM) technique is 

utilized. Meanwhile, the parameters of the AFCM algorithm complicate the cluster 

assignment in the presence of outliers or noise, thus resulting in reduced clustering 

performance. So, the parameters of AFCM are tuned by utilizing the new 

improved algorithm named Dingo Optimization Algorithm (DOA) to improve the 

clustering accuracy. It is done by assuming the AFCM parameters as a population 

of Dingoes and the maximum classification accuracy as its fitness function. 

Finally, the segmented images are fed to the classification process, where the 

Residual Attention Network (RAN) is used to attain the classified outcomes. 

Therefore, the investigated system shows a more efficient TLD prediction rate 
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compared to traditional techniques in the experimental investigation. The results 

from the experiments indicate that the suggested models exhibit exceptional 

classification performance, achieving an accuracy rate of 95.22%. Therefore, the 

model suggests advancement in predictive capabilities over traditional methods. 

Keywords: Tomato Leaf Disease Classification, Contrast-Limited Adaptive 

Histogram Equalization, Dingo Optimization, Adaptive Fuzzy C-Means-based 

Segmentation, Residual Attention Network. 

1 Introduction 

The classification of TLD presents a significant challenge in the agricultural 

sector. Early detection of plant infections is crucial for minimizing disease spread 

and reducing financial losses incurred by farmers [1]. However, conventional 

methods for identifying leaf diseases often lack accuracy and reliability [2]. 

Moreover, the absence of experts with agricultural training in remote areas further 

exacerbates these challenges, impacting global food security and causing 

substantial losses in tomato production [3]. To address these issues, automated 

procedures and technologies are increasingly being employed, leveraging 

Artificial Intelligence (AI) techniques, such as Deep Learning (DL) and Machine 

Learning (ML) [4, 5]. These advanced methods offer the potential for precise and 

efficient identification of TLDs, improving agricultural productivity and 

enhancing farmers’ profitability [6]. 

Precision farming employs AI techniques, including conventional DL 

methods and ML approaches. These methods are utilized to automatically 

identify and detect TLDs [7]. Classification applications, such as identifying and 

categorizing human diseases, are utilized across a variety of domains, including 

industry, healthcare, and medical image analysis [8]. The identification of plant 

diseases has been addressed in several ways utilizing conventional ML 

techniques [9]. Although the classifiers used in standard ML approaches rely 

heavily on hand-crafted features, these features are manually developed by the 

expert [10]. These methods are time-consuming and expensive [11]. DL 

techniques automatically extract deep features from images. This process 

overcomes the time-consuming issue, thus providing higher classification 

accuracy than conventional ML methods [12]. Convolution Neural Network 

(CNN) is one of the DL methods employed extensively in classifying plant 

diseases [13]. The possibility of identifying diseases in tomato plants is based on 

changes in leaf appearance and it is performed using CNN method [14]. This 

detection is used to improve the treatment decisions based on the disease. It 

requires a lot of computational power, which raises the complexity of 

classification [15]. Therefore, the TLD classification is implemented to solve the 

above problems.   
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TLD presents a significant hurdle to global agriculture, affecting crop 

productivity, quality, and farmers’ financial security. Despite TLD being a 

common issue for tomato plants, accurately identifying and managing TLD 

remains challenging in conventional methods. This research aims to create a 

robust TLD detection system using advanced technologies. By combining image 

preprocessing, Adaptive Fuzzy C-Means (AFCM) for segmentation, parameter 

optimization with the DOA, and Residual Attention Network (RAN) for 

classification, the proposed model seeks to enhance accuracy, efficiency, and 

predictive capabilities. The study mainly contributes to TLD management by 

identifying the various diseases on tomato leaves with the novel approach,which 

is further pointed out below: 

– The leaf images are processed in this novel approach via preprocessing, 

segmentation, parameters optimization, and classification processes to 

ensure the accurate detection of TLDs. 

– A promising and reliable solution for managing the TLD is provided for 

the agricultural practitioners using the proposed methodology. 

– Through detailed testing and validation, the study intends to demonstrate 

the model’s potential impact on crop yield, financial stability, 

sustainability, and food security. 

– The accurate classification of different types of TLD, including Bacterial 

spots, black mold, gray spots, late blight, and powdery mildew makes 

farmers take relevant actions in the earlier stage, thereby preventing the 

further impact of disease on the other healthy leaves. 

The objectives of the TLD classification system using DL are described 

below: 

– To develop an effective TLD classification model for classifying the 

various types of diseases from leaf images at an early stage. 

– To design an effective AFCM-based segmentation, the parameters are 

tuned using DOA optimization for increasing the efficacy of the model.  

– To implement a RAN model that classifies the TLDeffectively for 

improving the efficacy of the system using DOA optimization. 

– For evaluating the efficacy of the suggested TLD classification modelwith 

the conventional approaches using several effectiveness metrics. 

The article’s structure is organized as: 

– Section 2 provides insights into existing TLD classification methods and 

their respective advantages and disadvantages. 

– Section 3 outlines the architecture and dataset utilized in the proposed TLD 

classification system. 
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– Section 4 delves into the details of the Adaptive Fuzzy C-Means (AFCM)-

based segmentation method and the suggested algorithm. 

– Section 5 presents the experimental setup and outcomes, evaluating the 

effectiveness of the proposed TLD classification system. 

– Finally, Section 6 concludes the article with a summary of key findings and 

future research directions. 

By addressing the challenges associated with TLD classification and 

proposing an advanced AI-based solution, this article aims to contribute to the 

improvement of agricultural practices and the enhancement of crop yield and 

farmer profitability. 

2 Literature Survey 

2.1 Related works 

In 2021, Hammou et al. [16] implemented an efficient classification model 

using a DL framework. It was effectively supported by smartphone applications. 

The investigated tomato plant leaf disease classification was used to overcome 

the issues of farmer harvesting. The model enhanced the product quality due to 

the disease detection on various complex leaf structures. The tomato leaf images 

of the Plantvillage dataset with 9 class diseases were used in this framework. This 

framework employed a batch size of 32. DL approaches like DenseNet169 were 

used to identify the tomato plant infection. The Adam and RMSprop optimizers 

were used in this implementation to improve the efficacy of the system. 

In 2014, Zhang et al. [17] implemented plant disease detection using neural 

methods with multi-modal data. The ResNet34 approach was employed to 

increase the efficacy of solving the data dependency and overfitting issues. The 

initial stage was feature extraction. The features were extracted by Mask 

Residual-CNN. The complex backgrounds and difficult regions of backgrounds 

were effectively recognized. The environment database was utilized to recognize 

and classify the disease types in this model. This model provided greater 

classification precision and accuracy while predicting the six classes of TLD. The 

six types of TLD, namely early blight, gray mold, bacterial spot, yellow 

aspergillosis, late blight, and disease leaf mold were predicted. This system 

provided a lower error rate than other classification systems. 

In 2021, Zhou et al. [18] implemented a hybrid model that combined the 

benefits of deep residual networks and dense networks for the identification of 

TLDs. This model reduced the training parameter’s count to enhance the accuracy 

of the calculation. Also, it improved the gradients and data flow. Here, the neural 

network model was employed. They changed the image of hyper parameter’s 

input and characteristics to implement the classification tasks. The Tomato AI 

Challenger 2018 dataset was used, and the experimental findings demonstrated 
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high identification accuracy. This network model achieved better effectiveness 

and low cost compared to other models. 

In 2022, Anandhakrishnan et al. [19] recommended a deep-learning method 

that focused on agricultural fields for identifying leaf disease in tomatoes. The 

TLD images from the Plantvillagedataset were employed in this proposed work. 

In the investigational study, this dataset used several images for training and 

testing. The suggested model provided a better rate of accuracy when compared 

to recently used plant leaf disease prediction systems. 

In 2023, Attallah et al. [20] designed three neural networks for the automatic 

diagnosis of TLDs. From the fully connected layer of DL, the deep variables were 

removed via transfer learning. Then, it combined features from the three DLs to 

maximize the effectiveness of each deep network. It employed a selection of 

hybrid parameters and provided a feature group with completely smaller 

measurements. The identification process for TLDs used six classifiers. The 

findings showed that the developed system achieved the greatest accuracy. 

In 2023, Shubhangi Solanki et al. [21] explained a methodology 

incorporating both traditional classification techniques and DL approaches. 

During the conventional categorization phase, this study employed six different 

classification methods - Support Vector Machine (SVM), K-Nearest Neighbor 

(KNN), Multi-layer Perceptron (MLP), Logistic Regression (LR), and Naïve 

Bayes (NB). Among these, SVM demonstrated the highest accuracy. 

Subsequently, a Convolutional Neural Network (CNN) was utilized, revealing a 

noteworthy improvement in overall performance compared to traditional 

classifiers. 

In 2023, Shubhangi Solanki et al. [22] delivered a thorough examination of 

classification and segmentation techniques centered on images. The manuscript 

was primarily delved into contemporary deep-learning methodologies and 

strategies. The survey encompassed an exploration of recent literature, 

particularly emphasizing DL models employed for image segmentation and 

classification. Despite the superior performance attained by these models, there 

remained certain areas warranting future research focus, notably the high costs 

and complexity associated with model structures. 

In 2023, ShubhangiSolanki et al. [23] illustrated a study that entailed 

evaluating the efficacy of autonomously identifying brain tumors from MR and 

CT imaging using fundamental image processing methods coupled with various 

computational techniques. Six traditional classifiers were initially employed for 

tumor identification, followed by the integration of CNNs and Deep CNNs into 

the analysis. Among these, VGG16 emerged as the top-performing DL model, 

surpassing traditional methods notably. Particularly, a five-layered CNN with an 

80:20 split ratio yielded the highest accuracy of 97.86%, showcasing substantial 

performance enhancement over conventional classifiers. 
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In 2019, Siddharth Singh Chouhanet et al. [24] conducted a survey that 

analyzed articles using computer vision and soft computing techniques for 

identifying and classifying diseases based on plant leaf images. The objective was 

to provide an overview of the latest advancements in digital image processing and 

soft computing methodologies, including their applications and associated theories. 

2.2 Motivation 

The challenges in detecting TLDs arise from the complex and varied nature 

of leaf structures and the similarity of symptoms between different diseases. 

Traditional classification systems faced difficulties in accurately identifying and 

distinguishing between various diseases due to the following reasons, such as 

variability in leaf shapes,complexity of diseases, interference from environmental 

factors, and limited feature extraction. The conventional system gave slow 

convergence rates while predicting the disease with a large amount of data. They 

faced challenges related to classification complexity and did not address the 

problem of gradient disappearance. Hence, several deep-learning techniques were 

employed to develop TLD classification. The advantages as well as disadvantages 

are listed in Table 1. DenseNet [16] provides scalable outcomes for detecting the 

TLD. Hence, it improves productivity and predicts the TLD effectively. Although 

it solves the harvesting problems, it struggled to predict the diseases due to the 

greenhouse effect and did not solve the problem of gradient disappearance. R-

CNN [17] prevents the overfitting problems. Also, it reduces the information 

dependencies. Yet, the implementation needed more time, and it was hard to 

detect the disease because of the bad weather conditions. RDN [18] reduces the 

economic losses. Also, it increases the prediction efficiency while using a large 

amount of dataset. However, it suffers from dimensionality issues and also it does 

not support real-time implementations. DCNN [19] enhances the gradients and 

information flow and reduces the computational complexity issue. Yet, the cost 

is high for the implantation of TLD detection. Also, it gives slow convergence 

while using a large amount of data. CNN [20] reduces the error rates by providing 

the training of the model. It obtains robustness and better accuracy. Yet, it 

increases the classification complexity, and the automatic detection concept is not 

supported. Hence, these disadvantages suggested building an effective TLD 

classification framework utilizing DL. 

2.3 Problem statement 

The identification of TLD represents a critical challenge in tomato 

production, impacting the productivity and quality of tomato crops. Despite 

India’s prominent position in tomato production, the industry faced significant 

losses due to various diseases affecting tomato plants. The presence of disease in 

tomatoes reduces the production quality, so accurate TLD categorization and 

diagnosis are needed. Conventional methods for TLD identification often lacked 

the precision and efficiency required to effectively manage disease spread and 
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minimize crop losses. Additionally, the absence of early disease recognition 

mechanisms further exacerbated the problem, hindering proactive disease 

management practices. Addressing these challenges necessitated the 

development of advanced TLD classification and identification models capable 

of providing timely and accurate diagnoses. Such models should leverage 

innovative technologies and methodologies to enhance disease detection 

capabilities and improve agricultural productivity. Therefore, the problem at hand 

involves developing a robust TLD classification and identification model that 

integrates cutting-edge techniques to accurately categorize and diagnose tomato 

plant leaf infections, ultimately enhancing crop yield and quality in agriculture. 

Table 1 

Features and Challenges of TLD Classification Models using Deep Learning. 

Author  Methodology Features Challenges 

Hammou et al.  

[1] 
DenseNet 

• It provides scalable 

outcomes for predicting 

the TLD. Hence, it 

improves the productivity. 

• It predicts the TLD 

effectively. Hence, it 

solves the harvesting 

problems. 

• It struggles to detect 

the disease due to the 

greenhouse effect. 

• It does not solve the 

problem of gradient 

disappearance. 

Zhang et al.  

[2] 
R-CNN 

• It prevents overfitting 

problems. 

• It reduces the information 

dependencies. 

• The testing takes 

overtime during the 

implementation. 

• It is hard to detect 

the disease because 

of the bad weather 

conditions. 

Zhou et al.  

[3] 
RDN 

• It reduces the economic 

losses. 

• It increases the prediction 

efficiency while using a 

large amount of dataset. 

• It suffers from 

dimensionality 

issues. 

• It is not supported for 

real-time 

implementation. 

Anandhakrishnan 

et al.  

[4] 

DCNN 

• It enhances the gradients 

and information flow. 

• It reduces the 

computational complexity 

issue. 

• The cost is high for 

the implantation of 

TLD detection. 

• It gives slow 

convergence while 

using a large amount 

of information. 

Attallah et al.  

[5] 
CNN 

• It decreases the error rates 

by providing the training 

of the model. 

• It obtains robustness and 

better accuracy.  

• It increases the 

classification 

complexity. 

• The automatic 

detection concept is 

not supported. 
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3 Heuristic-Aided Fuzzy Model for Tomato Leaf Disease 

Classification with Elucidation of Dataset and Image Preprocessing 

3.1 Architectural explanation 

The traditional TLD classification framework provides high complexity to 

the computation. Most of the traditional classification system gives high error 

rates. The simple architecture of the existing classification model is implemented 

in the agricultural sector at a low cost with limited resources. But, the 

implementation of the cost is huge. It is complex to predict and recognize plant leaf 

disease because of the complex pattern variation present in the model. It is hard to 

overcome the disease due to the complex location, infection status, surrounding 

things, and various diseases in the image. In the conventional models, accurate 

identification of affected areas on leaves is very difficult due to the color similarity 

between infected and healthy areas in the tomato leaves. The correct disease class 

is not identified at an early stage. The low-quality input samples do not classify the 

disease effectively, and they provide a low recall rate for the prediction. The small 

texture, same color, and small size of the diseased area on leaves make the system 

struggle to identify and classify the disease. The traditional methods decreased the 

system’s prediction performance. The diagrammatic design of the DL-based TLD 

classification structure is shown in Fig. 1. 

 

 

Fig. 1 – Diagrammatic depiction of deep learning-based TLD classification structure. 



Designing a New Tomato Leaf Disease Classification Framework using … 

121 

The recently developed TLD classification system is utilized to accurately 

identify various categories of TLD, such as Powdery mildew, Late blight, 

Bacterial spot, Gray spot, and Black mold, in their early stages. The tomato leaf 

images are collected and stored on the internet. The input image is incorporated 

into the preprocessing phase. 

The contrast enhancement in the image is performed by the CLAHE method 

andthe technique of median filtering is utilized to eliminate undesired noise from 

the image and the pre-processed images are fed into the AFCM-based 

segmentation. The DOA optimization is utilized to optimize the values like 

fuzziness parameter, epsilon, and iteration count to improve the dice coefficient 

and Jaccard coefficient. The fuzziness parameter can also be associated with the 

level of intersection between sets or the extent to which an element belongs to a 

specific set. Jaccard’s Index measures the degree of overlap between bounding 

boxes or masks, and the Dice Coefficient quantifies the similarity between two 

masks. The images of segmented features are inserted into the RAN-based 

classifier by which various types of leaf diseases are effectively identified and 

classified. The effectiveness of the proposed model is evaluated in comparison to 

various traditional methods. 

3.2 Dataset collection 

The tomato leaf images are used in the developed TLD classification system, 

and the explanations are given below: 

Dataset-1 (Dataset of Tomato Leaves): 

Utilizing the Plantvillage dataset for TLD identification and classification is 

a widely recognized strategy within the field. This dataset contains a substantial 

array of images of tomato plant leaves, each annotated with labels indicating the 

presence or absence of specific diseases. Leveraging this dataset to train a RAN 

model that is tailored for detecting TLDs offers a valuable opportunity to 

showcase the model’s effectiveness in discerning various disease types. 

Additionally, it serves as a fundamental benchmark for evaluating alternative 

approaches in the realm of TLD detection and classification.This research utilizes 

a dataset comprisedof tomato plant leaf images sourced from the Plantvillage 

dataset, which is available at “https://data.mendeley.com/datasets/ngdgg79rzb/1” 

(accessed on 7th September 2023) [25]. It contains two dataset images. Totally, 

14,531 images of tomato leaves are presented in the first dataset. It contains the 

images of the Plantvillagedataset. The image size is set to 227227. In the first 

dataset, the diseases are categorized and named as Two-spotted spider mites, 

Healthy, Late Blight, Early Blight, Tomato Mosaic Virus, Target Spot, Bacterial 

Spot, Leaf Mold, Septoria Leaf Spot, and Yellow Leaf Curl Virus. It contains 

4976 images. The image size is set to 227227. The diseases are divided into six 

categories, such as Powdery Mildew, Black Leaf Mold, Healthy, Bacterial Spot, 

Late Blight, and Gray Leaf Spot. This dataset contains complex background 

https://data.mendeley.com/datasets/ngdgg79rzb/1
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images and single leaf and single background images. Hence, the term 
L

IT  is the 

input of tomato leaf images, where 1,2, ,i I= .  

The collected tomato leaf images for the disease classification are displayed 

in Fig. 2. 

 

Desc. Image 1 Image 2 Image 3 Image 4 Image 5 

Disease 

name 
“Bacterial Spot” “Black Mold” “Gray Spot” “Late Blight” 

“Powdery 

Mildew” 

Sample 

images 

     

Fig. 2 – Sample tomato leaf images for the classification framework. 

 

3.3 Image preprocessing 

The plant images 
L

IT are given as input to the preprocessing phase. The 

dataset contains poor quality or poor lighting images. These images are used for 

detecting the disease in real-world applications. It impacts the classification 

outcome. Hence, solving the lighting issue is needed. 

CLAHE:  

The CLAHE method is a contrast enhancement technique that is used to 

improve the details and reduce the illumination issue. Histogram-based methods 

are generally used for preprocessing applications, and it is popularly used in the 

world. The leaf area’s intensity distribution is highlighted from the background 

using CLAHE. This process is performed in the whole input tomato plant leaf 

image. Therefore, the CLAHE method is employed to decrease the illumination 

issue. 

Median filter:  

Images with noise are cleaned by using median filters. Nonlinear and linear 

filters are the two categories of the preprocessing filter methods. Fine visual 

details, lines, and sharp edges are performed by linear filters. It also struggled in 

the presence of signal-dependent noise. An example of a non-linear filter is the 

median filter, which is one of the most widely used nonlinear filters for 

eliminating Salt and Pepper noise. The preprocessed images are noted by P

gF . 

The outcomes of the preprocessed phase are shown in Fig. 3. 
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Desc. Image 1 Image 2 Image 3 Image 4 Image 5 

Original 

images 

     

Prepro-

cessed 

images 

     

Fig. 3 − Outcomes of the preprocessed images. 
 

3.4 Model validation procedures 

These are essential to accurately assess the performance and generalization 

ability of a TLD classification model. Here are some commonly used validation 

procedures used in this research: 

1. Train-Validation-Test Split: 

• Description: Split the dataset into three subsets: training, validation, 

and test sets. 

• Process: 

• The training set is used to train the model. 

• The validation set is used to tune hyperparameters and assess 

model performance during training. 

• The test set is kept separate and used only once after model training 

to evaluate its performance on unseen data. 

• Advantages: 

• Provides a fair assessment of the model’s performance on unseen 

data. 

• Helps prevent overfitting by allowing tuning on a separate 

validation set. 

2. Cross-Validation: 

• Description: Divide the dataset into multiple subsets (folds), 

iteratively train the model on a subset of folds, and evaluate its 

performance on the remaining fold. 

• Process: 

• Perform multiple iterations each time by using different folds as 

the validation set and the remaining folds as the training set. 
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• Average the performance metrics across all iterations to obtain a 

more robust estimate of model performance. 

• Advantages: 

• Maximizes the use of available data for both training and 

validation. 

• Provides a more reliable estimate of model performance, 

especially with limited data. 

By employing these model validation procedures, it should be ensured that 

the TLD classification model performs well on unseen data. It is also robust to 

variations and can generalize effectively to new instances, thus enhancing its 

reliability and applicability in real-world agricultural settings. 

4 Leaf Image Segmentation Using Adaptive Fuzzy  

and Classification using Deep Networks for  

Identifying Tomato Leaf Diseases 

For the segmentation of leaf images, the AFCM clustering algorithm is 

utilized. At the same time, the parameters of AFCM are required to be tuned for 

reliable segmentation. So, the parameters of AFCM are optimized using the 

DOA, which is inspired by their superior hunting behavior. The process of DOA 

for tuning AFCM parameters is described as follows, 

4.1 DOA 

The dingo animal behavior is used to build up the DOA [26] optimization. 

The dingo’s prey behaviors like encircling, hunting, and searching are considered 

to implement the dingo algorithm. In the encircling phase, the prey’s location is 

identified. The existing model’s major aim is to identify the present location of 

the prey.  

Encircling: Dingoes possess the capability to locate the position of their prey 

effectively. Once the alpha has located the prey, the pack will follow suit and 

encircle it. In order to represent the social structure of dingoes, it is presumed that 

the current best-agent approach is directed towards pursuing the prey as a goal. 

This is akin to an optimal strategy, considering that the specific hunting area is 

not known in advance. Meanwhile, other quest agencies are currently 

endeavoring to revitalize their strategies for the forthcoming approach. 

Step 1: Primarily, the parameters of AFCM are initialized as h and are 

considered as the population of Dingoes. For example, the Dingoes present in the 

search space are assumed as the initiated parameters of AFCM in the search 

space. 

Step 2: Then, the initial population of AFCM parameters is modeled based 

on the distance between the dingo and the prey. For instance, the AFCM 

parameters that are placed in the dingo population are properly aligned depending 
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on the distance between dingoes and their corresponding prey. It is specified by 

the following mathematical equations (1) to (5). 

 ( ) ( )= −e qE BQ y Q j . (1) 

Here, the variable
eE  indicates the distance between the prey and the dingo. 

The present position of the prey is denoted by ( )qQ y . Further, the present 

position of the dingo is denoted by ( )Q j .  

 ( ) ( ) ( )+ = −qQ j 1 Q j CE e . (2) 

The terms C and B  are the coefficient vectors. The term B  is calculated 

using (3). 

 2=B b1
, (3) 

 2= −C cb c2
. (4) 

Here, the terms 
1b  and b2

 are the random vector and it is taken in the range 

of  0,1 .  

Step 3: Afterwards, the fitness function is calculated to obtain the optimal 

solution of tuning parameters. Here, the maximum classification accuracy ( )maxA  

is considered as the fitness for tuning the AFCM parameters.   

Step 4: Next, based on the position of the prey, the dingo location is updated 

in the DO. The dingo is divided into two categories related to their hunting 

behaviors, namely beta and alpha dingoes. The first type of alpha dingo always 

gives commands during the hunting process. The dingo’s position during the 

hunting process is given in (5). 

 
3

3
maxJ

 
=  −  

 
c J1 . (5) 

Here, J represents dingo position vectors and the variable 
maxJ  is the 

maximum iteration. 1 is the vector of ones. Similarly, the position or 

significance of the AFCM parameters is modified as per the updated position of 

the dingo location. 

Step 5: Then, the hunting plan for the dingoes is mathematically formulated. 

It is assumed that all members of the pack, including the alpha, beta, and other 

individuals, possess a high level of knowledge regarding the potential locations 

of their prey. The alpha dingo always commands the hunting. Nevertheless, 

sometimes beta and other dingoes might also participate in hunting. Therefore, 

the first 2 best values attained so far are deemed. According to the best search 

agent’s location, other dingoes also need to update their position. As per the 

discussion, (6) to (14) are modeled in this concern. The positions of all the 

https://www.hindawi.com/journals/mpe/2021/2571863/#EEq1
https://www.hindawi.com/journals/mpe/2021/2571863/#EEq1
https://www.hindawi.com/journals/mpe/2021/2571863/#EEq6
https://www.hindawi.com/journals/mpe/2021/2571863/#EEq12
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members, including alpha, beta, and other individuals are updated with respect to 

the best search agent. The distance between the alpha, bêta, and other individuals 

from the prey is mathematically derived as, 

 = −E B Q Qα 1 α
, (6) 

 = −E B Q Qβ 2 β
, (7) 

 = −p pE B Q Q3
, (8) 

where Eα
, Eβ  and pE denotes the distances of the prey from alpha, beta, and 

other dingoes, respectively, B1
, B2

 and B3
 represent the position vectors of 

alpha, beta, and other dingoes, accordingly, Q  symbolizes the prey position, and 

aQ , 
bQ  and 

cQ indicate the current prey position of alpha, beta and other 

dingoes, correspondingly. 

Simultaneously, the position of the dingoes is updated based on their prey 

position and is expressed as,   

 = −Q Q BE1 α α , (9) 

 = −Q Q BE2 β β
, (10) 

 = −p pQ Q BE3
, (11) 

where Q1
, Q2

 and Q3
indicate the updated position of alpha, beta, and other 

dingoes, respectively. The AFCM parameters are subjected to the hunting phase 

of DOA. Here, some parameters of AFCM are assumed as supreme ones, which 

are closely related to the optimal parameters. So, such supreme parameters are 

compared here with the alpha and beta dingoes. While hunting for the optimal 

solution (prey), the distance between the AFCM parameters and the optimal 

solution is analyzed. Further, the updated position of the supreme parameters and 

other parameters are calculated as of the above expressions.  

Step 6: Further the dingo’s intensity and fitness are validated to attain the 

optimal solution. The dingo’s intensity is validated using (12) as 

 
( )α

1
log

1 100G F


 
= +  − − 

J 1 1 . (12) 

Here, the parameter 
J  is the   dingo’s fitness solution. 1 is one 

dimensional vector of ones. Further, the fitness solution of  and p  dingoes is 

determined as per the (13) and (14) and is given as, 
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( )β

1
log

1 100G F


 
= + 

 − − 

J 1 1 . (13) 

Here, the parameter J  is the  dingo’s fitness solution. 

 
( )p

1
log

1 100
p

G F

 
= + 

 − − 

J 1 1 . (14) 

Here, the parameter pJ  is the p dingo’s fitness solution. Locations of the 

dingo are used to determine the prey’s position. As per this process, the fitness of 

all the parameters in the updated position is evaluated. The AFCM parameters are 

checked whether they fulfill the condition of ‘maximum classification accuracy’. 

If the fitness solution of  ,   and p dingo’s fulfilled the fitness condition Amax, 

the optimal solution is achieved. Likewise, the significance of AFCM parameters 

is checked with the maximum accuracy, which is defined as the fitness function. 

If the parameters satisfy the fitness condition, then such parameters of AFCM are 

selected as the optimal parameters and are finely tuned. 

Step 7: Finally, the fitness function of beta and alpha dingo is effectively 

determined based on the repeated progression. The process is iterated until 

reaching 
maxJ or the optimal solution. Similarly, the parameters are made to 

explore in the search space of DOA until they attain the best fitness. 

Hence, the parameters of AFCM are tuned using the DOA regarding the 

attained optimal solution. 

The DOA pseudocodeis given in Algorithm 1. 

 

Algorithm 1: Offered DOA 

Set the population size 

Determine the dingo’s search agents 

Initialize the AFCM parameters 

 For (d = 1 to max IR) 

 Find the fitness solution of dingo  

  For (h = 1 to Npop) 

   Update the recorded values 

   While (d < max IR) 

    Find the fitness function of alpha dingo using (12) 

    Find the fitness function of beta dingo using (13) 

    Find the fitness function of other dingo using (14) 

    Calculate the intensity and fitness of selected dingo 
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   End  

  End For 

 End For 

 Return the dingo best solution 

 Return the optimal parameters 

End  

 

4.2 AFCM-based image segmentation 

The preprocessed tomato leaf images P

gF  are fed into the AFCM-based 

segmentation. The AFCM [27] technique is generally used for image 

segmentation. The AFCM-based technique is used to accurately segment the 

TLD. The major advantage of the AFCM-based technique is that it segments the 

leaf disease automatically and provides higher efficacy than other k-means 

clustering strategies. The conventional ML models used raw images as input. 

Hence, it gives poor performance. But, the AFCM-based segmentation used 

histogram images to enhance the efficacy of the framework.  

The process of AFCM for image segmentation is explained as follows, 

Step 1: Initially, the number of clusters is selected among the pixels of P

gF  

and is mentioned as  . 

Step 2: Then, the cluster centers are randomly chosen from  and are 

indicated as  . Here, the AFCM is measured by analyzing the histogram of ,P

gF  

pixel value k , and fuzziness parameter. It is defined by using the following (15). 

 ( )
255

0 1

,ks sL j h f k




= =

=  , (15) 

where the term 
kj  indicates the histogram images and the center is indicated by

 . The parameter k  denotes the pixel value. The participants of fuzzy are 

denoted by h . 

Step 3: Subsequently, the distance between the pixel values and the cluster 

center is noted as ( ), sf k  , which is calculated using the Euclidean operation. It 

is validated using (16) as 

 ( ) ( )
255

0 1

, ,L j


  

= =

=        , (16) 

 ( )  l th l,t E a ,P= . (17) 
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Here, the centroid is notated by E , where 1,2,3,...,s E= . The centroid’s mean 

parameter is indicated by
tP . The segmented leaf images are notated by G

fO . 

Step 4: Then, the membership function is computed regarding the objective 

function. Here, increasing the dice coefficient and Jaccard coefficient serves as 

the objective function as both the dice coefficient and the Jaccard coefficient 

determine the similarity between the segmented image and the ground truth 

image. When the segmentation is done based on the increased dice coefficient 

and Jaccard coefficient values, accurate image segmentation is obtained. The 

objective function of increasing the dice coefficient and Jaccard coefficient is 

calculated in (18) as, 

 
 , ,

1 1
arg min

DI JAFCM FCM FCM
f e i

F

AT DL DL

Ob
 

= + 
 

, (18) 

where the term FCM

fAT indicates the optimized fuzziness value in the interval of

 2,20 . The term 
FCM

eDL denotes the optimized epsilon in the range of  1,10 . 

The optimized number of iterations in the interval of  10,100  is denoted by

FCM

iDL . Here, the dice coefficient to analyze the image’s similarity is calculated 

using (19) as, 

 
( )

1

2 2

1

2 j jj

j jj

DI



=



=

 
=

 +




 (19) 

Here, the term ( )2 2

j j +  is the total pixel count. The parameter 
j j   is the area 

of pixels overlap. The dice coefficient is notated by DI . At the same time, 

theJaccard coefficient that calculates the image’s similarity is calculated in (20) 

as 

 
( )

1

2 2

1

j jj

j j j jj

JA



=



=

 
=

 + − 




. (20) 

Here, the term JA  is the index of the Jaccard coefficient. 

Step 5: Subsequently, the cluster centers are updated regarding the objective 

function and the adaptability of the fuzziness parameters is then verified 

accordingly. These processes are repeated until the objective function is attained. 

Hence, the leaf images are accurately segmented using the proposed method 

for effective TLD identification and are specified as G

fO . The image 

segmentation using AFCM is illustrated below in Fig. 4. 
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Fig. 4 – AFCM-based Tomato leaf image segmentation. 

 

4.3 RAN-based image classification 

The segmented images G

fO  are included in the RAN-based image 

classification. 

The RAN [28] method is mainly used for image classification. It effectively 

classifies the TLD. Conventional ML techniques obtain less flexible and scalable 

outcomes. Thus, the RAN-based image segmentation is used to reduce the system 

cost and maintenance. It enhances the privacy and security of the model. It 

effectively decreases the loss of information issue.The RAN is developed by 

layering several attention components. The two components, namely pixel and 

channel components are included in the RAN framework, which is utilized to 

effectively predict the disease from complex background filter noise and fundus 

images. Further, most of the DL models suffer from vanishing gradients or 

gradient explosion problems because of poor weight initialization and backward 

propagation through multiple layers. These issues influence effective data 

learning and converge with sub-optimum classification results. But, the RAN 

model has to skip connections within layers, which facilitates the gradient flow 

among the layers. Also, the attention mechanism of RAN dynamically adjusts the 
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neuron weights and highly focuses on the significant features of data. So, the 

gradient disappearance and gradient explosion issues are reduced using the RAN 

method, thus improving the TLD classification performance. Additionally, 

gradient disappearance and gradient explosion issues are reduced using the RAN 

method during the classification.  

The RAN’s channel component is measured in (21) as 

 ( )
1 1

1
.

j

J j
I X

 



= =

=  


 . (21) 

Here, the term ( ).j   is the location of the channel component. The channel 

component of RAN indicates the Convolutional layers, residual blocks, pooling 

layer, attention modules, feature maps, Batch normalization, and fully connected 

layer. The pooling operation is notated by .H  The feature map size is indicated 

by 1 1 . The RAN’s pixel component is calculated in (22) as 

 G y QB =  . (22) 

Here, the term `G is the RAN’s output. The module of pixel component is 

indicated by QB . The parameter y  is the position of the pixel component.The 

diagrammatical design of RAN-based TLD classification is displayed in Fig. 5. 
 

 

Fig. 5 – Diagrammatical design of RAN-based TLD classification. 

 

The outcomes of the AFCM-based segmentation phase are displayed in 

Fig. 6. 
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Description Image 1 Image 2 Image 3 Image 4 Image 5 

Original 

images 

     

K-means-

based 

Segmented 

images 

     

Watershed-

based 

segmented 

images 

     

Otsu-based 

segmented 

images 

     

Adaptive 

FCM-

based 

segmented 

images 
     

Fig. 6 – Results of the AFCM-based segmented images. 

 

5 Results and Discussions 

5.1 Experimental setup 

The suggested RAN-related TLD categorization system is developed using 

MATLAB software. The experimental analysis uses a population rate fixed at 10, 

the chromosome length at 3, and an iteration fixed at 50. The efficacy of the 

implemented TLD classification system is compared with several traditional 

approaches like VGG16 [29], Mobile Net [30], CNN [20], Resnet [31], and RAN 

[25]. 
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5.2 Evaluation measures 

When evaluating the classification of TLD, the used effectiveness metrics 
play a crucial role in accurately assessing the model’s performance. In the below-
mentioned performance measures, DVu indicates True Positive, DVo indicates 
True Negative, UWo indicates False Positive, and UWu indicates False Negative. 

A detailed explanation of each metric and its relevance to TLD classification 
is given as follows: 

(a) False Negative Rate (FNR): 
UWu

UWu DVu+
. 

FNR indicates the proportion of actual diseased tomato leaves that are 
incorrectly classified as healthy. In TLD classification, a low FNR indicates the 
model's ability to correctly identify diseased leaves, minimizing the risk of 
missing actual cases of disease. 

(b) Sensitivity: 
DVu

SEN
DVu UWu

=
+

. 

SEN indicates the proportion of actual diseased tomato leaves that are 
correctly classified as diseased. It measures the model’s ability to detect diseased 
leaves accurately, providing insights into its sensitivity to disease presence. 

(c) Negative Predictive Value (NPV): 3
DVo

N
UWu DVo

=
+

. 

NPV indicates the proportion of correctly classified healthy tomato leaves 
among all leaves predicted to be healthy. NPV helps to assess the reliability of 
the model in correctly identifying healthy leaves, which is crucial for 
distinguishing between diseased and healthy plants. 

(d) False Positive Rate (FPR): 
UWo

FPR
UWo DVo

=
+

. 

FPV indicates the proportion of healthy tomato leaves that are incorrectly 
classified as diseased. It measures the model’s tendency to misclassify healthy 
leaves as diseased, indicating the occurrence of false alarms. 

(e) Specificity: 
DVo

Sf
DVo UWo

=
+

. 

Specificity measures the proportion of actual healthy tomato leaves that are 
correctly classified as healthy. Specificity complements sensitivity by focusing 
on the model’s ability to accurately identify healthy leaves, thus providing a 
comprehensive assessment of its discriminatory power. 

(f) F1-score: 
2

F1
2

DVu

DVu UWo UVu


=

+ +
. 

It is the harmonic mean of precision and recall, providing a balanced measure 

of model performance. It takes both false positives and false negatives into 
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account, making it suitable for evaluating the overall accuracy of TLD 

classification. 

(g) Precision: 
DVu

pe
DVu UWo

=
+

. 

It indicates the proportion of correctly classified diseased tomato leaves 

among all leaves predicted to be diseased. Precision assesses the accuracy of 

positive predictions, indicating the model’s ability to avoid misclassifying 

healthy leaves as diseased.

 (h) Mathew Correlation Coefficient (MMC): 

 
( )( )( ) ( )

u o o u

u o u u o o o u

DV DV UW UW
MCC

DV UW DV UW DV UW DV UW

 − 
=

+ + + +
.

 

MCC is the correlation coefficient between actual and predicted 

classifications with considering all four elements of the confusion matrix. MCC 

provides a comprehensive measure of classification performance by considering 

both false positives and false negatives. 

(i) False Discovery Rate (FDR): 
UWo

FDR
UWo DVu

=
+

. 

FDR indicates the proportion of incorrectly classified diseased tomato leaves 

among all leaves predicted to be diseased. FDR complements precision by 

focusing on the proportion of false positives among positive predictions. 

(j) Accuracy: 
UWu

UWu DVu+
. 

Accuracy indicates the proportion of correctly classified tomato leaves (both 

diseased and healthy) over the total number of leaves. Accuracy provides a 

general measure of the model’s overall correctness in classifying tomato leaves, 

considering both true positives and true negatives. 

In tomato disease identification and classification, accuracy serves as a 

measure of the overall correctness of predictions, offering insight into the 

classifier’s proficiency in distinguishing between diseased and healthy tomato 

leaves. Sensitivity assesses the classifier’s ability to accurately identify diseased 

tomato leaves among all instances known to be diseased, ensuring minimal 

missed detections. Similarly, specificity gauges the classifier’s capability to 

accurately recognize healthy tomato leaves among all instances known to be 

healthy, reducing the occurrence of false alarms or misclassifications. Precision 

evaluates the proportion of correctly identified diseased tomato leaves among all 

instances predicted as diseased, ensuring accurate disease identification. FPR 

measures the rate of misclassification of healthy tomato leaves as diseased, 

providing insights into misclassification tendencies. FNR quantifies the rate of 

missed disease detections essential for evaluating disease detection efficacy.  
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NPV assesses the proportion of correctly identified healthy tomato leaves among 

all instances predicted as healthy, ensuring accurate identification of healthy 

leaves. FDR indicates the rate of incorrect disease identifications, aiding in the 

understanding of misclassification rates. F1-Score, the harmonic mean of 

precision and sensitivity, offers a balanced evaluation of false positives and false 

negatives, facilitating a comprehensive assessment of disease identification 

performance. Similarly, MCC, considering true and false positives and negatives, 

provides a balanced measure of disease classification quality, accounting for class 

imbalances and offering insight into overall classifier performance. 

5.3 Performance analysis over previously used methods 

The efficacy of the suggested RAN-based TLD categorization system is 

compared over conventionaltechniques, which is shown in Fig. 7.  

 

(a) 

 

(b) 

Fig. 7 – Effectiveness evaluation on implemented TLD categorization  

system using deep learning over various techniques in regards to:  

(a) Accuracy; (b) Precision. 
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(c) 

 

(d) 

Fig. 7 – Effectiveness evaluation on implemented TLD categorization  

system using deep learning over various techniques in regards to:  

(c) Sensitivity; (d) Specificity. 
 

The suggested RAN-based TLD classification system providesa higher 
accuracy of 4.05% than VGG16, 6.15% than MobileNet, 9.12% than CNN, and 
8.08% than Resnet at the learning percentage of 50.This improved performance 
is due to the suppression of overfitting or vanishing gradients problem by the skip 
connections within the layers and the attention mechanism involved in the 
proposed model. Also, accurate image segmentation is done based on a higher 
Dice coefficient and Jaccard coefficient prior to the classification process. It 
further aids RAN in better data learning by focusing on the important image 
features. Meanwhile, the existing methods suffered from the overfitting issue, 
which degraded the learning capability of the model. As this issue was not 
focused on disease classification, the lower classification accuracy is obtained by 
the existing methods. Hence, the improved performance is achieved using the 
RAN model compared to the prevailing methods. 
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5.4 Performance analysis of the suggested system  

over previously used methods for segmentation 

The efficacy of the suggested DOA-AFCM-based segmentation for the 
TLDcategorization systemis compared over conventionaltechniques as shown in 
Fig. 8. The suggested DOA-AFCM-based segmentation for the TLD system 
provided a higher dice coefficient of 5.05% than OTSU, 7.85% than Watershed, 
10.22% than K-means, and 9.28% than FCM using Image 2. The proposed 
segmentation approach utilizes DOA for tuning the parameters of AFCM. The 
proper tuning of AFCM improves the cluster quality, adapts to image features, 
and rapidly converges with better clustering results. So, the dice coefficient and 
Jaccard coefficient of the segmented image are also increased, indicating the 
enhanced clustering of image pixels. However, the existing methods did not focus 
on the parameters tuning, which caused complexity and lowered the segmentation 
efficiency. Therefore, it is clear that the leaf image gets accurately segmented 
using the proposed approach. For the experimental testing, the DOA-AFCM-
based segmentationfor the TLD categorization system gives a high dice 
coefficient compared to previously used segmentation methods. 

 

(a)                                                                 (b) 

 

(c) 

Fig. 8 – Effectiveness evaluation on implemented TLD categorization  

system using deep learning over various techniques in regards to:  

(a) Dice coefficient; (b) IoU; (c) Jaccar Index. 



R.D. Kanti, G.S. Rao, S. Aruna 

138 

5.5 Efficacy testing of the offered system 

As displayed in Table 2, the implemented RAN-based TLD classification 

system’s efficacy is compared with existing approaches. The suggested RAN-

based TLD classification system showedimproved performance with a high 

specificity of 3.35% than VGG16, 4.25% than MobileNet, 6.22% than CNN, and 

8.88% than ResNet. These prevailing techniques offered limited data learning due 

to the vanishing gradients or gradients explosion problem. So, the gradient flow 

was not regulated among the neuron layers. Thus, the complex relationships 

among the image features were not properly learned by these models, which also 

trapped with the local optimum classification results. The RAN-based TLD 

classification system achieves significantly higher specificity compared to 

VGG16, MobileNet, CNN, and ResNet. Specificity measures the proportion of 

true negatives correctly identified by the classifier, indicating its ability to 

accurately classify non-diseased tomato leaf images. The observed improvements 

in specificity suggest that the RAN-based system can effectively discriminate 

between healthy and diseased tomato plants, reducing false positive rates.The 

offered classification model outperforms other systems and gives high 

accuracy.The overall accuracy of the RAN-based TLD classification system is 

superior to other systems. Accuracy represents the proportion of correctly 

classified instances across all classes, reflecting the overall performance of the 

classifier. The higher accuracy achieved by the RAN-based system indicates its 

ability to accurately classify tomato leaf images across different disease 

categories, contributing to more reliable disease diagnosis and management. 

The Residual Attention Network (RAN) architecture is designed to leverage 

attention mechanisms to focus on salient features while suppressing irrelevant 

information in the input images. This attention mechanism likely contributes to 

the system’s improved performance by enhancing feature representation and 

discriminative power.Additionally, the residual connections in RAN facilitate the 

training of deeper networks by mitigating the vanishing gradient problem, 

enabling more effective learning of complex patterns and relationships within the 

data.The observed improvements in specificity and accuracy highlight the 

significance of the RAN-based TLD classification system in enhancing disease 

diagnosis and management in tomato plants. Accurate and reliable classification 

of diseased leaf images is essential for timely intervention and targeted treatment, 

ultimately leading to improved crop yield and quality.Further validation and 

testing of the RAN-based TLD classification system under diverse environmental 

conditions, disease severities, and tomato varieties are essential to assess its 

robustness and generalizability. In future work,  the RAN-based system will be 

integrated into user-friendly platforms or mobile applications. So, the system 

becomes well adopted by farmers and agricultural extension workers, enabling 

real-time disease monitoring and decision support in the field. 
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Table 2 

Performance testing of the developed TLD  

categorization model with several techniques. 

Measures VGG16 [22] MobileNet [23] CNN [5] ResNet [24] RAN 

Accuracy 90.012 91.72 92.826 94.152 95.217 

Sensitivity 90.341 91.818 93.409 95.114 94.545 

Specificity 89.941 91.699 92.7 93.945 95.361 

Precision 65.866 70.383 73.327 77.143 81.409 

FPR 10.059 8.3008 7.2998 6.0547 4.6387 

FNR 9.6591 8.1818 6.5909 4.8864 5.4545 

NPV 89.941 91.699 92.7 93.945 95.361 

FDR 34.134 29.617 26.673 22.857 18.591 

F1-Score 76.186 79.684 82.159 85.191 87.487 

MCC 71.462 75.638 78.642 82.291 84.912 

 

5.6 Efficacy testing on the offered system among  

previously used methods for segmentation 

The evaluation metrics used to compare the segmentation models include 

Intersection over Union (IoU), Dice Coefficient, and Jaccard Index. These 

metrics are commonly employed in image segmentation tasks to assess the 

overlap and similarity between the predicted and ground truth segmentation 

masks.The results demonstrate that the DOA-AFCM-based segmentation method 

outperforms existing approaches, such as Otsu’s method, Watershed, K-means, 

and Fuzzy C-means in terms of the Jaccard index. This improvement indicates 

that the proposed method is more effective in accurately segmenting regions of 

interest in tomato leaf images, which is crucial for disease detection. As displayed 

in Table 3, the system’s efficacy is improved by using DOA-AFCM-based 

segmentation for the TLD categorization and is compared with existing 

approaches. The suggested DOA-AFCM-based segmentation for the TLD 

categorization system shows improved performance with a higher Jaccard index 

of  29.41% than OSTU, 34.75% than Watershed, 9.09% than K-means, and 

5.88% than FCM. The offered segmentation model outperforms other systems 

and gives a high Jaccard index.As the parameters of these existing methods are 

not properly tuned, the cluster quality is lowered, resulting in decreased Dice 

coefficient and Jaccard coefficient. Hence, the results suggest that the DOA-

AFCM-based segmentation model consistently outperforms or matches the 

performance of existing techniques across all evaluated metrics. This overall 

superiority indicates the effectiveness of the proposed approach in accurately 

segmenting TLD regions, as reflected by higher IoU, Dice Coefficient, and 

Jaccard Index values. The improved segmentation accuracy offered by the DOA-
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AFCM-based model has significant implications for TLD detection systems. 

Accurate segmentation is crucial for identifying and quantifying disease-affected 

areas on tomato leaves, facilitating early detection and intervention measures to 

prevent crop yield loss.While the results demonstrate promising performance, it 

is essential to consider potential limitations, such as computational complexity, 

robustness to variations in imaging conditions, and generalizability to diverse 

datasets and disease types. Addressing these limitations is crucial for the practical 

deployment of the proposed segmentation model in real-world TLD detection 

scenarios. 

Table 3 

Performance testing of the developed DOA-AFCM-based  

segmentation model with several techniques. 

Measures OTSU[28] Watershed [29] K-means [30] FCM [31] DOA-AFCM 

IoU 0.54545 0.52381 0.64706 0.75 0.70588 

Dice Coefficient 0.70588 0.6875 0.78571 0.85714 0.82759 

Jaccar Index 0.54545 0.52381 0.64706 0.75 0.70588 

6 Conclusion and Future Work 

Conclusively, the challenges associated with identifying and categorizing 

TLD in agriculture are substantial, particularly given the repercussions on both 

crop quality and yield. The impact of TLD on agriculture is especially noteworthy 

due to its adverse effects on crop quality and yield. With India holding the second 

position in tomato production, the presence of numerous diseases compounds the 

problem, resulting in diminished crop output.Timely identification of these 

ailments is essential for reducing contagion and improving crop productivity.To 

tackle these obstacles, a model for classifying and identifying TLD was created, 

employing a multi-step methodology.The model began by aggregating tomato 

leaf images from online sources, followed by preprocessing to enhance image 

quality. Subsequently, the Adaptive Fuzzy C-Means (AFCM) technique was 

employed for segmentation, enabling effective delineation of diseased regions. 

Notably, parameter tuning within the segmentation process was facilitated by the 

innovative DOA, enhancing the accuracy of disease localization.Finally, the 

classified images underwent a rigorous classification process using the Residual 

Attention Network (RAN), culminating in highly efficient TLD prediction rates. 

This suggested a significant advancement in predictive capabilities compared to 

conventional methods. The integration of innovative algorithms and DL 

frameworks not only improved the accuracy of disease identification but also 

paved the way for more effective disease management strategies in agriculture. 

Therefore, the developed model showed the potential to tackle the obstacles 
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linked to TLD detection and control. It could ultimately lead to improved crop 

health and productivity in tomato farming. 

Prospects for the advancement of precision agriculture research and 

development involve combining various data streams, such as satellite imagery 

and ground sensors. Progress will also involve the refinement of autonomous 

agricultural systems that can operate with limited human involvement. The focus 

of the research will include predictive analytics and decision-making tools 

customized for agriculture, promoting sustainable farming techniques using 

precision technologies, and improving digital agricultural infrastructure to 

facilitate data-driven decision-making. Furthermore, investigating blockchain 

and traceability solutions, fostering collaboration among stakeholders, and 

advocating for favorable policy frameworks will be essential for promoting 

sustainable and fair agricultural practices. While the focus is on TLD in this 

manuscript, there is a potential for extending the developed model to identify and 

classify other crop diseases. Future research should explore the applicability of 

the model to a broader range of plant diseases, thereby offering a more 

comprehensive solution for disease management in agriculture.While this study 

focuses on TLD categorization in tomato plants, it is believed that this framework 

can be extended to other crops, areas, and agricultural settings with appropriate 

modifications and customization. 
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