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Abstract: In this paper, a multipath transmission with no regenerative relays over 
fading channels has been addressed. The probability density function of minimum 
amplitude at relay stations input has been determined. The statistical results were 
subsequently applied to the analysis of the outage probability, the level crossing 
rate and the average outage duration.  
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1 Introduction 

The telecommunication system consists of the transmitter, several relay 
stations, and the receiver. The additive Gaussian noise, interference and fading 
influence both the input of receivers of all relay stations and at the one of the 
receiver station. The occurrence of fading at the relay and receiver station inputs 
can induce changes of the signal amplitude. The values will presumably fall 
below a predetermined value at any moment. The time intervals when we lost 
the connection may occur as well. Depending on the fading nature, we can 
determine the probability density function of the signal amplitude at relay 
stations and receiver inputs. The position of the relay stations should enable the 
occurrence the dominant component at the receiver input. If that be the case, the 
probability density function of signal amplitude has the Rician distribution. If 
the dominant component does not occur and is not visible line of sight between 
the pair of nearby relay stations does not exist, the probability density function 
of signal amplitude has the Rayleigh distribution. Except the Rayleigh and 
Rician distribution, the one of the signal amplitude and power in urban area can 
be well described by the Nakagami-m, Nakagami-q, Weibull or some other types 
of fading channels. Similarly, when the shadowing effect has been evidenced, 
fading can be described by the lognormal distribution. The fading occurring at the 
relay stations input causes changes in the signal amplitude. 
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On relay telecommunication systems, the determination of the probability 
density function of signal amplitudes minimum is of particular scientific interest. 
This signal amplitudes minimum is very important for determining of the outage 
rate. Assuming that an outage is declared whenever signal amplitude falls below 
a predetermined threshold, the outage probability is determined by integrating 
the probability density function of minimum signal values below the threshold. 
The determination of joint probability density function of signal amplitudes 
minimum and their derivations are also the subject of this analysis. By 
employing this joint probability density function of minimum amplitudes the 
level crossing rate can be determined. The average outage duration is given as a 
quotient between the system outage probability and the joint level crossing rate. 
In order to obtain the joint probability density function of amplitudes minimum 
and their derivatives, we need to know the joint probability density function of 
signal amplitudes and their derivatives at the input of each receiving relay 
stations. The probability density function of amplitudes minimum in two or 
more time intervals has also been determined. 

2 The Probability Density Function of Minimal Amplitude 

There are several relay stations between transmitter and receiver, therefore 
the signal is transmitted over several sections. Fig. 1 represents the model of 
such system. Signals by the system sections are represented by 1 2, , ng g g… . 

 

Fig.1 – The model of the n-relay stations system. 

Probability density functions of signals 1 2, , ng g g…  has the Rayleigh scenario 
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The cumulative distributions of signals 1 2, , ng g g…  are as it follows: 
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If the value of amplitude at one of sections is lower then the predetermined 
one threshold come the outage. The determination of this probability requires 
determining the probability density function of minimal amplitudes. Random 
variable g  is defined as 

 { }1 2min , , , ng g g g= … . (3) 

Probability density of random variable g  is 
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The definition of two RV’s a  and b  as follows 
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The joint probability density function of RV’s a  and b  can be written as  
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Fig. 2 represents a three-branch system model. The system comprises a 
transmitter and two relay stations. 

 

Fig. 2 – A three-branch system model. 

Signals 1g , 2g  and 3g  are mutually dependent. These are determined by the 
joint probability density function 
 ( )

1 2 3 1 2 3, ,g g gp g g g , (9) 

where g  is equal to minimal value of 1g , 2g  or 3g , 

 { }1 2 3min , ,g g g g= . (10) 

As the signal g  can have any value of 1g , 2g  or 3g , the probability density 
function of signal g  is as follows: 
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Fig. 3 represents a four-section system. Signals 1g , 2g , 3g  and 4g  are 
mutually dependent. 

 

Fig. 3 – A four- section system model. 

Joint probability density function of signals 1g , 2g , 3g  and 4g  are 

 ( )
1 2 3 4 1 2 3 4, , ,g g g gp g g g g . (12) 

Signal g  is 

 { }1 2 3 4min , , ,g g g g g= . (13) 

If signal 1g g=  then 2 1g g> , 3 1g g>  and 4 1g g> , and if signal 2g g=  
then 1 2g g> , 3 2g g>  and 4 2g g> , and if 3g g=  then 1 3g g> , 3 3g g>  and 
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4 3g g> , and if 4g g=  then 1 4g g> , 2 4g g>  and 3 4g g> . In this case, 
probability density of random variable g is equal with 
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The Fig. 4 represents a two-section system model. 

 

Fig. 4 – Two-section system model. 

Signal g  is 

 { }1 2min ,g g g= . (15) 

Probability density of signal g  is given by 
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The Fig. 5 represents the n  sections system model  

 

Fig. 5 – An n sections system model. 
 

Fig. 6 represents a two- section system model. 
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Fig. 6 – A two- section system model. 

The signals at the section outputs are 11g  and 12g  in a particular time 
interval , whereas in the following time interval they are 21g  and 22g . The signal 

1a  has  the minimal value of signals 11g  and 12g , and 2a  is minimal value of 

21g  or 22g , 
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Signals 11g  and 12g  are interdependent, whereas the signals 21g  and 22g  
are dependent on and determinated by joint probability functions.  
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Joint probability density function of signals 1a  and 2a  are 
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Similarly, the signals 11g , 12g , 21g  and 22g  can be mutually dependent, 

 ( )
11 12 21 22 11 12 21 22, , ,g g g gp g g g g . (20) 

If that be the case, the joint probability density function of signals 1a  and 

2a  equals 
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3 Numerical Results 

Probability density function of signal g  is 
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If ( )
1 1gp g  has Nakagami-m, ( )

2 2gp g  has Rician and ( )
3 3gp g  has 

Rayleigh distribution, 
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Fig. 7 presents the graphics of probability density distribution for values 
2.5G = , 2m =  and 0.8ρ = . 
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Fig. 7 – The probability density function for 2.5G = , 2m =  and 0.8ρ = . 

 

 
Fig. 8 – The probability density function for 2.5G =  and 2m = . 
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If ( )
1 1gp g  and ( )

2 2gp g  have Nakagami-m and ( )
3 3gp g  has Rician distri-

bution 

 

( ) ( )

( )

( )

2
1

1

2
2

2

2 2
3

2
2

3

2 1
1 1

2 1
2 2

23 3
3 02 2

2

2
( )

.

m m gm r
g

m m gm r
g

g G
s

g

mp g g e
G m r

mp g g e
G m r

g g Gp g e I
s s

−−

−−

+
−

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (24) 

Fig. 8 represents the graphics of probability density function for 2.5G =  
and 2m = . 

4 The Probability Density Function and its Derivatives 

Fig. 9 shows a two-section system model  

 

Fig. 9 – A two-section system model. 

The joint probability density function of signal 1g  and its derivative 1g�  is 
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The joint probability density function of signal 2g  and its prime derivative  

2g�  is 
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A signal a  is defined as 

 { }1 2min ,a g g= . (27) 

The joint probability density function of signal a  and its prime derivative 
a�  is 
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The cumulative probability of signal 1g  is 
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The cumulative probability of signal 2g  is 
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The substitution gives the joint probability density function of signal a  and 
its prime derivative a� , 
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5 The Probability Density Function in Two Time Intervals 

Fig 10 represents a two-section system model. 

 

Fig. 10 – Representation of a two-system model. 

The signals 1a  and 2a  are determined as 
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The joint probability density function of signals and their prime derivatives 
are 

 

( )
( )
( )
( )

11 11

12 12

21 21

22 22

11 11

12 12

21 21

22 22

,
,
,
, .

g g

g g

g g

g g

p g g
p g g
p g g
p g g

�

�

�

�

�
�
�
�

 (33) 

The joint probability density function of signals 1a  and 2a , and their prime 
derivatives 1a�  and 2a�  are 
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6 Conclusion 

The signal transmission through relay stations has been addressed in the 
paper. A relay system comprises a transmitter, a receiver and several relay 
stations. Fading may occur at each relay station input. This phenomenon causes 
variability of signal amplitude at a receiver station input. Assuming that an 
outage of system be declared whenever an input signal falls below a 
predetermined threshold, the outage probability must be below predetermined 
value, which is  a very important issue for designing digital telecommunication 
systems. The determination of the outage probability is required for determining 
a joint probability density function of signal amplitudes for all input sections of 
the transmission system. When the signal amplitude is at its minimum, the 
outage occurs when the minimum falls below the threshold. Integrating a 
probability density function of signal amplitude minimum from zero to a 
predetermined threshold value results in the outage probability. 

Relay systems with two or several sections have been considered.  The 
probability density function of signal at the receiving relay stations can be of 
Rayleigh, Racian, Nakagami-m, Nakagami-q or Weibull fading. When 
shadowing occurs, the probability density function is log-normal. 

The designing of digital wireless systems requires the average outage 
duration as parameter. The average outage duration is determined as the quotient 
of the outage probability and average number of level crossing when amplitudes 
minimum falls below threshold. Therefore, only average number of the level 
crossing is needed to obtain the average outage duration. Determining the 
average number of level crossing is needed to determine joint probability density 
function of signal amplitudes minimum and theirs derivatives. That joint 
probability function is determined for several fading scenario combinations of 
interest (Rayleigh, Rician and Nakagami-m). By these combinations, signal 
amplitude minimum and their derivatives are independent. Derivatives of these 
amplitudes have Gaussian probability density function. In addition, joint 
probability density function of minimum amplitudes in two different time 
intervals is determined. That joint probability density function determines the 
outage probability in two time intervals. There are some numerical results in 



M. Stefanović, Z. Popović, F. Destović, N. Tanasković 

352 

closed-form expressions for probability density function of minimum signal 
amplitudes at inputs of receiving stations and their graphic representations. 
These results can be useful for designing digital telecommunication systems. 
Determining a number of relay stations and distance between sections for 
predetermined values of the outage probability is possible. 
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