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The Efficiency of Particle Swarm Optimization 
Applied on Fuzzy Logic DC Motor Speed Control 
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Brahim Gasbaoui3, Abdelfatah Nasri4 

Abstract: This paper presents the application of Fuzzy Logic for DC motor speed 
control using Particle Swarm Optimization (PSO). Firstly, the controller designed 
according to Fuzzy Logic rules is such that the systems are fundamentally robust. 
Secondly, the Fuzzy Logic controller (FLC) used earlier was optimized with PSO 
so as to obtain optimal adjustment of the membership functions only. Finally, the 
FLC is completely optimized by Swarm Intelligence Algorithms. Digital 
simulation results demonstrate that in comparison with the FLC the designed 
FLC-PSO speed controller obtains better dynamic behavior and superior 
performance of the DC motor, as well as perfect speed tracking with no overshoot. 

Keywords: DC Motor speed control, Fuzzy logic controller, Intelligent fuzzy 
control, Particle swarm optimization. 

1 Introduction 
In spite of the development of power electronics resources, the direct 

current machines are becoming more and more useful insofaras they have found 
wide application, i.e. automobile industry (electric vehicle), weak power using 
battery system (motor of toy), the electric traction in the multi-machine systems, 
etc. 

The speed of DC motor can be adjusted to a great extent so as to provide 
easy control and high performance [1, 2]. There are several conventional and 
numeric controller types intended for controling the DC motor speed at its 
executing various tasks: PID Controller, Fuzzy Logic Controller; or the 
combination between them: Fuzzy-Swarm, Fuzzy-Neural Networks, Fuzzy-
Genetic Algorithm, Fuzzy-Ants Colony. 
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Fuzzy theory was first proposed and investigated by Prof. Zadeh in 1965. 
The Mamdani fuzzy inference system was presented to control a steam engine 
and boiler combination by linguistic rules [3, 4]. Fuzzy logic is expressed by 
means of if-then rules with the human language. In the design of a fuzzy logic 
controller, the mathematical model is not necessary. Therefore the fuzzy logic 
controller is of good robustness. Owing to its easy application, it has been 
widely used in industry.. However, the rules and the membership functions of a 
fuzzy logic controller are based on expert experience or knowledge database. 

Much work has been done on the analysis of fuzzy control rules and 
membership function parameters [4]. The PSO (particle swarm optimization) 
algorithms were used to get the optimal values and parameters of our FLC. The 
PSO is based on a metaphor of social interaction. It searches a space by 
adjusting the trajectories of individual vectors, called ‘particles’, as they are 
conceptualized as moving as points in multidimensional space. The individual 
particles are drawn stochastically towards the positions of their own previous 
best performances and the best previous performance of their neighbours. Since 
its inception, two notable improvements have been introduced on the initial PSO 
which attempt to strike a balance between two conditions. The first one 
introduced by Shi and Eberhart [5] uses an extra ‘inertia weight’ term which is 
used to scale down the velocity of each particle and this term is typically 
decreased linearly throughout a run. The second version introduced by Clerc and 
Kennedy [6] involves a ‘constriction factor’ in which the entire right side of the 
formula is weighted by a coefficient. Their generalized particle swarm model 
allows an infinite number of ways in which the balance between exploration and 
convergence can be controlled. The simplest of these is called PSO. The PSO 
algorithms are applied to choose membership functions and fuzzy rules. 
However, the expert experiences or knowledge are still necessary for the ranges 
of membership functions. In this paper, a novel strategy is proposed for 
designing the optimal fuzzy controller.  

PSO algorithms are applied to search globally optimal parameters of fuzzy 
logic. The best ranges of membership functions, the best shapes of membership 
functions and the best fuzzy inference rules are dug out at the same time. 
Furthermore, the performances of three different fuzzy logic controllers are 
compared. Simulation results are given to show the effectiveness of FLC-Swarm 
controller. 

2 Model of DC motor 
DC machines are characterized by their versatility. By means of various 

combinations of shunt, series, and separately-excited field windings they can be 
designed to display a wide variety of volt-ampere or speed-torque characteristics 
for both dynamic and steady-state operation. Because of the ease with which 
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they can be controlled systems of DC machines have been frequently used in 
many applications requiring a wide range of motor speeds and a precise output 
motor control [7, 8]. 

In this paper, the separated excitation DC motor model is chosen for its 
good electrical and mechanical performances rather than other DC motor 
models. The DC motor is driven by applied voltage. Fig. 1 shows the equivalent 
circuit of DC motor with separate excitation. The characteristic equations of the 
DC motor are represented as: 
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The equivalent circuit of DC motor with separate excitation illustrated in Fig. 1. 

 
Fig. 1 – Equivalent circuit of DC motor with Separate Excitation. 

Table 1 
Used symbols. 

Symbols Designations Units 

exi , indi  Excitation current and Induced current. [A] 

rω  Rotational speed of the DC Motor. [rad/S] 

exV , indV  Excitation voltage and Induced voltage [Volt] 

exR , indR  Excitation Resistance and Induced Resistance. [Ω] 

exL , indL , 

indexL  
Excitation Inductance, Induced Inductance 
and Mutual Inductance. [mH] 

J  Moment of Inertia. [Kgm2] 
Cr  Couple resisting. [Nm] 
fc  Coefficient of Friction. [Nms/rad] 
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Mathematical model expressed by the equations (1), (2), (3) can be 
presented by the MATLAB 7.4 (R2007a) model in Simulink version 6.6. The 
model of the DC motor in Simulink is shown in Fig. 2. Various parameters of 
the DC motor are shown in Table 2. 
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Fig. 2 – Model of the DC Motor in Simulink. 

 

Table 2 
Parameters of the DC Motor. 

exV  = 240 [V] indL  = 0.012 [mH] 

indV  = 240 [V] indexL = 1.8 [mH] 

exR  = 240 [Ω] J  = 1 [Kgm2] 

indR  = 0.6 [Ω] Cr  = 29.2 [Nm] 

exL  = 120 [mH] fc  = 0.0005 [Nms/rad] 

3 Fuzzy Logic Controller 
Fuzzy logic is expressed by means of the human language [9]. Based on 

fuzzy logic, a fuzzy controller converts a linguistic control strategy into an 
automatic control strategy, and fuzzy rules are constructed by expert experience 
or knowledge database. 
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First, set the error ( )e t  and the error variation d ( )e t  of the angular velocity 
to be the input variables of the fuzzy logic controller. The control voltage ( )u t  is 
the output variable of the fuzzy logic controller.  

The linguistic variables are defined as {NB, NS, Z, PS, PB} meaning 
negative big, negative small, zero, positive small and positive big respectively. 
The membership functions of the fuzzy logic controller are shown in Fig. 3. The 
fuzzy rules are summarized in Table 3. The type of fuzzy inference engine is 
Mamdani.  

The fuzzy inference mechanism in this study follows as: 
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where i is the output rule after inferring. 
 

Table 3 
Fuzzy inference rules. 

( )e t  ( )u t  
NB NS Z PS PB 

NB NB NB NS NS Z 

NS NB NS NS Z PS 

Z NS NS Z PS PS 

PS NS Z PS PS PB 

d ( )e t  

PB Z PS PS PB PB 
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Fig. 3 – Membership function of fuzzy logic controller. 

4 Particle Swarm Optimization (PSO) 
PSO is a population-based optimization method first proposed by Eberhart 

and Colleagues [10, 11]. Some of the attractive features of PSO include the ease 
of implementation and the fact that no gradient information is required. It can be 
used to solve a wide array of different optimization problems. Like evolutionary 
algorithms, PSO technique conducts search using a population of particles, 
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corresponding to individuals. Each particle represents a candidate solution to the 
problem at hand. In a PSO system, particles change their positions by flying 
around in a multidimensional search space until computational limitations are 
exceeded. Concept of modification of a searching point by PSO is shown in Fig. 4. 

 
Fig. 4 – Concept of modification of a searching point by PSO. 

Xk: current position, Xk+1: modified position, Vk: current velocity, 
Vk+1: modified velocity, VPbest: velocity based on Pbest,  
VGbest : velocity based on Gbest. 
The PSO technique is an evolutionary computation technique, but it differs 

from other well-known evolutionary computation algorithms such as the genetic 
algorithms. Although a population is used for searching the search space, there 
are no operators inspired by the human DNA procedures applied on the 
population. Instead, in PSO, the population dynamics simulates a ‘bird flock’s’ 
behavior, where social sharing of information takes place and individuals can 
profit from the discoveries and previous experience of all the other companions 
during the search for food. Thus, each companion, called particle, in the 
population, which is called swarm, is assumed to ‘fly’ over the search space in 
order to find promising regions of the landscape. For example, in the 
minimization case, such regions possess lower function values than other, visited 
previously. In this context, each particle is treated as a point in a d-dimensional 
space, which adjusts its own ‘flying’ according to its flying experience as well as 
the flying experience of other particles (companions). In PSO, a particle is 
defined as a moving point in hyperspace. For each particle, at the current time 
step, a record is kept of the position, velocity, and the best position found in the 
search space so far. 

The assumption is a basic concept of PSO [11]. In the PSO algorithm, 
instead of using evolutionary operators such as mutation and crossover, to 
manipulate algorithms, for a d-variabled optimization problem, a flock of 
particles are put into the d-dimensional search space with randomly chosen 
velocities and positions knowing their best values so far (Pbest) and the position 
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in the d-dimensional space. The velocity of each particle, adjusted according to 
its own flying experience and the other particle’s flying experience. For 
example, the i-th particle is represented as xi = (xi,1 ,xi,2 ,…, xi,d) in the d-
dimensional space. The best previous position of the i-th particle is recorded and 
represented as: 
 Pbesti = (Pbesti,1 , Pbesti,2 ,..., Pbest i,d). (6) 

The index of best particle among all of the particles in the group is gbestd. 
The velocity for particle i is represented as vi = (vi,1 ,vi,2 ,…, vi,d). The modified 
velocity and position of each particle can be calculated using the current velocity 
and the distance from Pbesti,d to gbestd as shown in the following formulas [12]: 

 ( ) ( ) ( ) ( ) ( ) ( )1
, , 1 , , 2 ,(Pbest ) (gbest )t t t t

i m i m i m i m m i mv wv c Rand x c Rand x+ = + − + − , (7) 

 ( ) ( ) ( )1 1
, , , ,  1,2, , ; 1,2, ,t t t

i m i m i mx x v i n m d+ += + = … = … , (8) 
where 

          n - Number of particles in the group, 
         d  - dimension, 
           t - pointer of iterations(generations), 

      
( )
,
t

i mv  - velocity of particle i at iteration t, ( )min max
,
t

d i d dV v V≤ ≤  

          w - Inertia weight factor, 
     c1, c2 - Acceleration constant, 
  rand() - Random number between 0 and 1, 

      
( )
,
t

i dx  - Current position of particle i at iterations, 

   Pbesti - Best previous position of the i-th particle, 
    Gbest - Best particle among all the particles in the population. 
 

The evolution procedure of PSO Algorithms is shown in Fig. 5. Producing 
initial populations is the first step of PSO. The population is composed of the 
chromosomes that are real codes. The corresponding evaluation of a population 
is called the “fitness function”. It is the performance index of a population. The 
fitness value is bigger, and the performance is better. The fitness function is 
defined as follow: 
 _PI MIN offset e= −∑  (9) 

where PI is the fitness value, e is the speed error and “ _MIN offset ” is a 
constant. 

After the fitness function has been calculated, the fitness value and the 
number of the generation determine whether or not the evolution procedure is 
stopped (Maximum iteration number reached?). In the following, calculate the 
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Pbest of each particle and Gbest of population (the best movement of all 
particles). The update the velocity, position, gbest and pbest of particles give a 
new best position (best chromosome in our proposition). 

 
Fig. 5 – The evolution procedure of PSO Algorithms. 

5 Optimal Fuzzy Controller Design 
In order to design the optimal fuzzy controller, the PSO algorithms are 

applied to search globally optimal parameters of the fuzzy logic. The structure of 
the fuzzy logic controller with PSO algorithms is shown in Fig. 6.  

In this paper, the chromosomes of the PSO algorithms include three parts: 
the range of the membership functions (Ke and Kde), the shape of the 
membership functions (e1~e5, de1~de5 and u1~u5) and the fuzzy inference 
rules (r1~r25). The output voltage is thereby such that the steady-state error of 
the response is zero. The genes in the chromosomes are defined as: 
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[Ke,  Kde,  e1,  e2,  e3,  e4,  e5,
de1,  de2,  de3,  de4,  de5,
u1,  u2,  u3,  u4,  u5,
r1,  r2,  r3,  r4,  r5,  r6,  r7,  r8,  r9,  r10,  r11, r12,  r13,
r14,  r15,  r16,  r17,  r18,  r19,  r20,  r21,  r22, r23,  r24,  r25]

 (10) 

 
Fig. 6 – Structure of FLC with PSO algorithms. 

 

 

 
Fig. 7 – Membership function of fuzzy logic controller with PSO algorithms. 
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Fig. 7 shows the membership functions of the fuzzy logic controller with 
PSO algorithms. Table 4 lists the fuzzy inference rules with PSO algorithms. 
Table 5 lists the parameters of PSO algorithms used in this paper. 

The fuzzy inference rules (r1~r25) are replaced of 1 (NB), 2 (NS), 3 (Z), 
4(PS) and 5 (PB). 

Table 4 
Fuzzy inference rules. 

( )e t  ( )u t  
NB NS Z PS PB 

NB r1 r6 r11 r16 r21 
NS r2 r7 r12 r17 r22 
Z r3 r8 r13 r18 r23 

PS r4 r9 r14 r19 r24 
d ( )e t  

PB r5 r10 r15 r20 r25 

Table 5 
Parameters of PSO algorithms. 

Population Size 50 Ke and Kde [0.001  0.005] 

Number of Iterations 100 e1, de1 and u1 [-1   -0.5] 

wmax 0.6 e2, de2 and u2 [-1   0] 

wmin 0.1 e3, de3 and u3 [-0.5  +0.5] 

c1 = c2 1.5 e4, de4 and u4 [0   +1] 

Min-offset 200 e5, de5 and u5 [+0.5   +1] 

6 Computer Simulation 
Three different fuzzy logic controllers are designed for the computer 

simulation. First, fuzzy logic controller is based on the expert experience, as 
described in section 3. Second, the fuzzy logic controller is based on the PSO 
algorithms only to find the optimal range of the membership functions (FLC1 
with PSO algorithms). Last, the optimal fuzzy controller is based on the PSO 
algorithms so as to search the optimal range of the membership functions, the 
optimal shape of the membership functions and the optimal fuzzy inference rules 
(FLC2 with PSO algorithms). After the evolution process, the optimal values of 
Ke and Kde in FLC1 with PSO algorithms are calculated as 0.005 and 0.005, 
respectively. The best chromosomes in FLC2 with PSO algorithms are pursued as: 
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[ 0.0047,  0.0039,  0.7860,  0.6640,
0.2778,  0.6323,  0.6693,  0.7963,  0.7275,  0.4050,  0.1561,
0.8070,  0.6799,  0.1561,  0.0661,  0.1085,  0.5899,
1,  1,  1,  2,  4,  5,  2,  3,  3,  5,  5,  3,
1,  1,  1,  4,  4,  4,  3,  3,

− −
− −

− − −

 5,  1,  2,  3,  3]

 (11) 

The optimal membership functions are shown in Fig. 8. The optimal fuzzy 
inference rules are listed in Table 6. 

 

 

 

Fig. 8 – The optimal membership functions. 
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Table 6 
The optimal fuzzy rules. 

( )e t  ( )u t  
NB NS Z PS PB 

NB NB PB PB PS PB 
NS NB NS NB PS NB 
Z NB Z NB PS NS 

PS NS Z NB Z Z 
d ( )e t  

PB PS PB NB Z Z 

Let the command signal be a step for the speed of the DC motor at 127.93 
Rad/Sec. The simulation results are obtained for 0.1 second range time.  

The speed response of FLC (Fuzzy Logic Controller) without PSO 
algorithms is shown in Fig 9. The speed response of FLC1 with PSO algorithms 
is shown in Fig 10. The speed response of the optimal fuzzy controller is shown 
in Fig 11. The performances of three different fuzzy logic controllers are listed 
in Table 7. 

Table 7 
Performances of three fuzzy logic controllers. 

Results FLC without PSO 
algorithms 

FLC1 with PSO 
algorithms 

FLC2 with PSO 
algorithms 

Rising time  [Sec] 0.0209 0.0112 0.0087 
Overtaking  [%] 0 0 0 

Steady state error [%] 0.45 0 0 

 
Fig. 9 – The speed response of FLC without PSO algorithms. 
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Fig. 10 – The speed response of FLC1 with PSO algorithms. 

 
Fig. 11 – The speed response of FLC2 with PSO algorithms. 

According to our MATLAB model simulation, we illustrate that the steady 
state error equals zero in two cases: FLC1 with PSO algorithms and FLC2 with 
PSO algorithms (Figure 10 and 11); the overtaking value is zero in three cases 
meaning that the FLC used is robust. The rising time of the DC motor speed step 
is less important in FLC1 with PSO algorithms compared with FLC alone and it 
is the minimal value in the FLC2 with PSO algorithms. 

In the present work, the intelligent controller based on Fuzzy Logic-PSO 
Algorithms is in agreement with the step reference speed. In the fuzzy logic DC 
motor control, the optimization of membership functions and rules was required, 
its significance being shown in the minimal rising time of speed response. 
Therefore the membership functions are adjusted in optimal values so as to give 
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a steady state error speed value equal zero. The computer MATLAB simulation 
demonstrate that the fuzzy controller associated to the PSO algorithms approach 
became very strong, giving very good results and possessing good robustness. 

7 Conclusion 
In this paper, the speed of a DC Motor drive is controlled by means of three 

different fuzzy controllers. The optimal fuzzy logic is designed using PSO 
algorithms. According to the results of the computer simulation, the FLC1 with 
PSO algorithms is better than the traditional FLC without PSO algorithms. The 
FLC2 with PSO algorithms is the best controller which presented satisfactory 
performances and good robustness (no overshoot, minimal rise time, steady state 
error is 0). The major drawback of the fuzzy controller is insufficient analytical 
technique design (the selection of the rules, the membership functions and the 
scaling factors). We chose the one with the use of the PSO algorithm for the 
optimization of this controller in order to control DC motor speed. Finally, the 
proposed controller provides drive robustness improvement and gives very good 
results and possesses good robustness. 
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