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Abstract: Effective road maintenance is crucial for ensuring safe and efficient 

transportation but is often compromised by the widespread occurrence of potholes. 

This study introduces a novel approach using an EfficientDet-based model for 

sophisticated pothole monitoring. Potholes pose a significant hazard that requires 

proactive detection and timely resolution. Traditional detection methods 

frequently fall short in terms of accuracy and real-time capability. Addressing 

these limitations, our research leverages the EfficientDet architecture, known for 

its optimal balance of accuracy and computational efficiency, to enhance the 

detection and monitoring of potholes. We utilized a carefully curated dataset from 

Kaggle, which includes 1,500 training images, 1,000 validation images, and 500 

test images, encompassing a variety of real-world pothole scenarios. This diversity 

enables the model to generalize effectively across different conditions. Our 

experimental evaluations demonstrate that the EfficientDet-based model achieves 

an impressive average precision of 0.90 and a robust recall of 0.92, highlighting 

its capacity for accurate and swift pothole detection-an essential component for 

improving road maintenance. Moreover, we provide a comparative analysis with 

five contemporary pothole detection algorithms: YOLOv5, RetinaNet, CenterNet, 

SSD, and Faster R-CNN, among which EfficientDet consistently shows superior 

performance in terms of precision, recall, F1-Score, and average precision. These 

findings highlight the significant advancements in road safety, infrastructure 

management, and resource optimization. By adopting sophisticated deep learning 

techniques like EfficientDet, we promote a transformative improvement in road 
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maintenance practices, paving the way for more resilient, safe, and disruption-

minimized transportation networks. 

Keywords: Road maintenance, Pothole detection, EfficientDet, Transportation 

infrastructure, Real-time monitoring. 

1 Introduction 

Road maintenance plays a pivotal role in ensuring safe and efficient 

transportation networks. The condition of road infrastructure significantly 

influences the driving experience, traffic flow, and overall road safety [1, 2]. One 

of the persistent challenges in road maintenance is the timely detection and 

remediation of potholes. Potholes, caused by wear and tear, weather conditions, 

and heavy traffic, not only lead to vehicular damage but also pose safety hazards 

for drivers and pedestrians alike [3, 4]. In this context, innovative technological 

solutions are imperative to revolutionize road maintenance practices and 

effectively address the menace of potholes.  

Traditionally, pothole detection has been carried out through manual 
inspections or basic automated systems. These methods are labor-intensive, time-
consuming, and often insufficient in covering vast road networks comprehensively 
[5, 6]. Automated techniques, although prevalent, have encountered limitations in 
accuracy, scalability, and real-time monitoring. Existing approaches, based on 
simple thresholding or traditional computer vision algorithms, struggle to 
accurately identify potholes in diverse road conditions and lighting environments. 
There is a pressing need for a sophisticated and efficient solution to tackle these 
challenges.  

The fundamental problem addressed by this study is the deficiency in current 

road maintenance strategies to promptly and accurately detect and address potholes. 

The inadequacies of traditional methods and the limitations of existing automated 

systems necessitate an advanced approach that combines cutting-edge technologies 

to improve the precision, efficiency, and scalability of pothole identification [7, 8]. 

To achieve this, the study seeks to utilize deep learning techniques, specifically the 

EfficientDet architecture, to revolutionize the way potholes are monitored and 

managed. The growing volume of vehicular traffic and the expanding road 

networks intensify the importance of proactive and efficient road maintenance. The 

motivation behind this study stems from the urgent need to reduce road hazards, 

enhance driver safety, and optimize road infrastructure management. By utilizing 

the capabilities of advanced deep learning models, there is an opportunity to create 

a comprehensive and robust pothole monitoring system that not only identifies 

potholes accurately but also aids in predictive maintenance, minimizing 

disruptions, and optimizing resource allocation [9, 10]. 

In response to the critical challenges posed by road maintenance, this study 

ventures into the realm of innovative technological solutions that hold the 
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potential to transform the landscape of pothole detection and monitoring. 

Potholes, ever-present hazards on roads, demand proactive approaches for their 

timely identification and resolution. Conventional methods, while prevalent, have 

fallen short in terms of accuracy, scalability, and real-time monitoring. To address 

these limitations, we delve into the integration of advanced deep learning 

techniques, specifically the EfficientDet architecture, as a means to revolutionize 

road maintenance practices. With this backdrop, our contributions are as follows:  

– Introducing an innovative approach that employs the EfficientDet 

architecture for pothole detection and monitoring.  

– Addressing the limitations of conventional methods through accurate and 

efficient detection of potholes.  

– Utilizing a curated dataset to train and validate the proposed EfficientDet-

based model.  

– Demonstrating superior performance through comprehensive experimental 

evaluation and contrasting with state-of-the-art algorithms. 

– Contributing to the advancement of road maintenance practices, fostering 

safer and more resilient transportation networks.  

The remaining portion of the document is structured in the following manner: 

In Section 2, an extensive overview of pertinent literature is furnished, 

emphasizing the progression of methods for identifying potholes. Elaborating on 

the methodology, Section 3 delineates the architecture of the EfficientDet model 

and the process of compiling the dataset. The experimental configuration, metrics 

for evaluating performance, and a comparative analysis with alternative 

algorithms are expounded upon in Section 4. Section 5 delves into the 

interpretation of the outcomes, their implications, and the significance of the 

novel approach proposed. Lastly, Section 6 encapsulates the paper by 

summarizing the discoveries and sketching potential paths for future research. 

2 Related Work 

Numerous research endeavors have been undertaken to address road 

maintenance and the identification of potholes using various technologies and 

methodologies. Albasir et al. [11] introduced a decentralized approach for road 

condition assessment, facilitating smart mobility management by enabling real-

time monitoring and data sharing among vehicles. In the context of pavement 

degradation monitoring, Shtayat et al. [12] explored the effectiveness of 

supervised machine learning algorithms, showcasing the potential for accurate 

pavement distress classification and efficient road maintenance. 

Silva et al. [13] introduced a sophisticated multi-agent framework designed for 

the surveillance of road conditions, with a specific focus on the identification of 

potholes using images captured by UAVs. Their approach utilized collaborative 
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agent networks to capture and process UAV imagery, contributing to timely and 

accurate pothole detection. Shi et al. [14] investigated road service performance 

assessment through human perception of vibrations during vehicle travel, shedding 

light on the correlation between road conditions and passenger comfort. 

In the realm of participatory sensing, Patra et al. [15] introduced PotSpot, a 

system that utilizes deep learning for pothole detection. By involving citizens in 

data collection, the system provides a cost-effective approach to widespread 

pothole monitoring and subsequent road maintenance. Similarly, Cafiso et al. 

[16] explored the use of bikes and e-scooters as probe vehicles for urban road 

pavement monitoring, showcasing the potential of lightweight vehicles as mobile 

sensing platforms. 

Sun et al. [17] focused on negative obstacle detection and tracking using 

stereo cameras, incorporating region of interest constraints to enhance obstacle 

detection accuracy. Shende et al. [18] proposed an IoT-based approach for 

pothole and hump detection using an ATMEGA328P microcontroller, providing 

real-time notifications about road anomalies and aiding timely repairs. Moreover, 

Katsamenis et al. [19] demonstrated the use of UAV visual data sources for real-

time road defect monitoring, offering insights into efficient road maintenance 

practices. Ali et al. [20] developed a novel computer vision-driven system that 

was created to identify potholes and road damage even in harsh weather 

conditions. This system utilizes advanced image processing methods to improve 

the precision of detection when faced with difficult environmental factors. 

Bej et al. [21] introduced SmartPave, a system driven by IoT technology that 

enables the immediate identification, continuous monitoring, and upkeep of road 

potholes. The system’s integrated sensors and data processing enable efficient 

identification of potholes, streamlining maintenance efforts. A comprehensive 

review by Ranyal et al. [22] highlighted the progression of utilizing intelligent 

sensing and AI methods for monitoring road conditions, showcasing their role in 

enhancing road infrastructure management. 

Bhatt et al. [23] provided an overview of road health monitoring systems 

using terrestrial laser scanning for rigid pavements, emphasizing precision and 

efficiency in data collection. Athulya et al. [24] presented an innovative approach, 

utilizing aquatic insects as indicators for monitoring riverine pothole health 

status, contributing to ecological assessment [25]. 

In summary, the related work reveals a diverse range of techniques and 

methodologies aimed at advancing road maintenance and pothole detection 

through technological innovations, participatory sensing, machine learning, and 

IoT-based systems [26, 27]. These studies collectively contribute to improving 

road infrastructure, safety, and mobility management. 
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3 Methodological Framework for EfficientDet-based  

Pothole Monitoring System 

The methodological framework of our system is depicted in Fig. 1, 

illustrating a structured approach to designing, implementing, and evaluating our 

EfficientDet-based pothole monitoring system. This process includes several 

crucial phases: collecting data, selecting the model architecture, training the 

model, evaluating its performance, and deploying it in real-time. Our adherence 

to this systematic methodology enables the system to detect and monitor potholes 

effectively, thereby improving road maintenance practices and enhancing the 

safety of transportation networks. The first step involves an extensive collection 

of road images that show various pothole scenarios. These images are captured 

with cameras mounted on vehicles, which helps in obtaining a broad 

representation of different road conditions and lighting environments. After 

collection, these images are processed to enhance their quality. This 

preprocessing includes reducing noise, correcting lighting variations, and 

improving the overall image clarity, ensuring that the data is optimal for further 

analysis. 

Data Collection

Preprocessing

Feature Extraction layersEfficient Net Backbone Detection Heads

Dataset Split and
Augmentation

Model Training

Model Evaluation

Inference and Real-
time monitoring

 

Fig. 1 – Methodological framework for EfficientDet-based pothole monitoring system. 
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3.1 EfficientDet architecture 

In this study, we utilize the EfficientDet architecture, renowned for its 

precision and computational efficacy in object detection, to identify road 

potholes. The core of EfficientDet is the EfficientNet backbone, which functions 

analogously to a highly refined analytical engine, extracting essential features 

from images of road surfaces. Complementing this, the Bidirectional Feature 

Pyramid Network (BiFPN) enhances these features, much like a sophisticated 

lens system that sharpens images across different scales for clearer analysis. 

Together, these components systematically determine the location and 

dimensions of potholes. The model’s predictive accuracy is honed through a 

meticulously calibrated loss function, ensuring it remains focused on genuine 

potholes while disregarding irrelevant features such as shadows or other road 

anomalies. By integrating these advanced computational methods, our approach 

not only enhances detection accuracy but also significantly contributes to the 

proactive maintenance of transportation infrastructure, ensuring safer travel 

conditions. 

3.1.1 Backbone network 

The backbone network B extracts features from input images, pre-processed 

as Xpreprocessed, and produces feature maps F with multiple resolutions. EfficientNet 

is commonly used as the backbone network due to its efficiency and strong 

feature extraction capabilities. 

 preprocessed( )F = B X . (1) 

3.1.2 BiFPN (Bidirectional Feature Pyramid Network) 

The BiFPN combines multi-scale feature maps to ensure effective 

information flow. It alternates between bottom-up and top-down pathways to 

enhance feature representation across different scales: 

 BiFPN( )=bifpnF F . (2) 

3.1.3 Regression and classification heads 

EfficientDet employs multiple detection heads for different object scales. 

Each head predicts bounding box coordinates B and class scores C for the 

detected objects. The regression head estimates the bounding box’s location and 

size adjustments, while the classification head assigns class probabilities: 

 head head bifpn, DetectionHead( )=B C F . (3) 

3.1.4 Anchor boxes and predictions 

The anchor boxes refer to predetermined boxes with different dimensions 

and aspect ratios that are positioned onto the feature map. For each anchor box, 

the EfficientDet architecture predicts the class scores and bounding box 
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adjustments. The final predictions are obtained by applying the predicted 

adjustments to the anchor boxes. 

 pred head Scalebox Anchorbox=  +B B , (4) 

 pred head=C C . (5) 

3.1.5 Loss function 

The architecture is trained using a loss function that encompasses multiple 

tasks, which consist of the loss for classification, Lcls, the loss for bounding box 

regression, Lbox, and the loss for objectness, Lobj. 

 cls pred trueCrossEntropy( , )=L C C , (6) 

 box pred trueSmoothL1( , )=L B B , (7) 

 obj pred trueBinaryCrossEntropy( , )=L O O , (8) 

 total cls box obj= +  +L L L L . (9) 

In summary, the EfficientDet architecture efficiently combines the backbone 

network's features with the BiFPN to generate multi-scale feature maps. These 

feature maps are used to predict bounding box coordinates and class scores for 

detected objects through multiple detection heads. The architecture’s loss 

function incorporates classification, bounding box regression, and objectness loss 

components for training the model to accurately detect objects like potholes in 

road images. 

 

Algorithm 1: EfficientDet-based Pothole Monitoring 

Input: Road image containing potholes (I) 

1. Data Collection and Preprocessing: 

– Collect a diverse dataset of road images with potholes. 

– Preprocess images: I_preprocessed = Preprocess(I). 

2. EfficientDet Architecture: 

– Use EfficientNet backbone for feature extraction:  

Features = EfficientNet(I_preprocessed). 

– Predict bounding box coordinates (B) and class scores (C) using 

detection heads: B, C = DetectionHeads(Features). 

3. Dataset Split and Augmentation: 

– Split dataset into training, validation, and test sets. 

– Apply data augmentation techniques: I_augmented = Augment(I). 

4. Model Training: 

– Initialize model parameters: θ. 

– Define classification loss (L_cls), bounding box regression loss 

(L_box), objectness loss (L_obj). 
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– Optimize multi-task loss using gradient descent: 

          Loss(θ) = L_cls + α*L_box + β*L_obj. 

5. Model Evaluation: 

– Evaluate the model on validation set. 

– Calculate precision (P), recall (R), F1-score (F1), and average precision 

(AP). 

6. Inference and Real-time Monitoring: 

– For each frame in the real-time camera feed: 

– Preprocess the frame: Frame_preprocessed = Preprocess(Frame). 

– Extract features: Features_frame = EfficientNet(Frame_preprocessed). 

– Predict bounding boxes and class scores: B_frame, C_frame =  

– DetectionHeads(Features_frame). 

– Apply non-maximum suppression to get final predictions. 

 

 

Fig. 2 – Examples of road potholes in diverse conditions. 

 

Fig. 3 – Camera-captured road scene with EfficientDet-based pothole detection. 
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4 Experimental Results and Discussion 

In this section, we present the experimental results achieved with our 

EfficientDet-based pothole detection model. We thoroughly discuss these 

outcomes to illuminate the insights they provide. The model’s performance is 

assessed using various quantitative metrics, allowing us to conduct a detailed 

analysis of its accuracy and overall effectiveness. For visual reference, Fig. 2 

displays a range of potholes under diverse road conditions, while Fig. 3 shows a 

real-world scene captured by a camera, highlighting the potholes detected by the 

EfficientDet model. 

4.1 Dataset validation: training, validation, and test set analysis 

The data is split into training, validation, and test sets to ensure robust model 

training and evaluation, as depicted in Table 1. Each set serves a specific purpose 

in enhancing the model’s performance and generalization capabilities.  

Table 1 

 Dataset Splits for EfficientDet-based Pothole Monitoring Model 

Dataset 

Split 

Number of 

Images 
Description 

Training 1500 
Pothole images used for training the EfficientDet-based 

model to monitor road potholes. 

Validation 1000 
Separate images used to validate and fine-tune the 

models performance throughout the training process. 

Test 500 
Independent set of images to evaluate the models 

efficacy in real-world pothole detection. 

 

The training set consists of 1500 images containing various instances of 

potholes. These images are used to train the EfficientDet-based model. During 

the training process, the model learns to identify patterns and characteristics that 

differentiate potholes from other road elements. The model adjusts its parameters 

iteratively to minimize the prediction errors on this training data. The goal is to 

make the model capable of generalizing its learning to new, unseen images.  

In order to prevent the issue of overfitting, which occurs when the model 

becomes excessively tailored to the training data and exhibits subpar performance 

on novel data, a distinct validation set comprising 1000 images is employed. This 

validation set aids in assessing the model’s performance while it undergoes 

training. The model is periodically evaluated on these validation images to ensure 

that it doesn’t become overly specialized to the training data. Adjustments to 

hyperparameters or training strategies can be made based on the validation 

outcomes, improving the model’s generalization capabilities.  

After training and validation, the final model’s performance is assessed using 

an independent set of 500 images known as the test set. This set represents real-

world scenarios where the model will be deployed for pothole detection. The test 
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set is not used during training or validation, ensuring an unbiased evaluation of 

the model’s efficacy. By evaluating the model’s performance in accurately 

detecting potholes in this unseen data, we can gauge its real-world performance 

and understand its strengths and limitations.  

4.2 Experimental evaluation: assessing model performance 

The model’s performance is evaluated using quantitative metrics, including 

precision, recall, F1-score, and average precision. These metrics provide insights 

into the accuracy, sensitivity, and overall effectiveness of the EfficientDet-based 

pothole detection model. 

Table 2 

Performance metrics on different dataset splits. 

Dataset Split Precision Recall F1-Score Average Precision 

Training 0.92 0.95 0.93 0.91 

Validation 0.88 0.90 0.89 0.87 

Test 0.90 0.92 0.91 0.89 

 

The Table 2 outlines the performance metrics of the EfficientDet-based 

pothole detection model across distinct dataset splits: Training, Validation, and 

Test. These metrics serve as essential indicators of the model’s effectiveness in 

accurately identifying road potholes. Precision reflects the model’s precision in 

predicting positive instances. For the Training dataset, the model achieves a 

precision of 0.92, denoting that approximately 92% of the identified potholes are 

indeed true positives. This signifies a high level of confidence in the model’s 

predictions. Recall assesses the model’s ability to detect all actual instances of 

potholes that exist within the provided dataset. In the Training dataset, the model 

demonstrates a recall of 0.95, indicating its capacity to identify 95% of the actual 

potholes. This underscores the model’s sensitivity and proficiency in capturing 

genuine potholes. The F1-Score, which combines precision and recall, 

demonstrates a well-balanced evaluation of the model’s effectiveness in 

identifying potholes. With a score of 0.93 in the Training dataset, it showcases a 

successful equilibrium between precision and recall, underscoring the model’s 

efficiency in pothole identification. Average Precision measures the model’s 

accuracy across different confidence thresholds, highlighting its performance 

variability. In the Training dataset, an average precision of 0.91 underscores the 

model’s consistent accuracy across varying confidence levels. 

In the Validation dataset, the metrics display slightly lower values, 

maintaining a strong performance trend. A precision of 0.88 confirms accurate 

predictions on unseen data, while a recall of 0.90 suggests effective detection of 

actual potholes. The F1-Score of 0.89 and average precision of 0.87 underline the 

model’s balanced and consistent performance. Similarly, the Test dataset 
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corroborates the model’s generalization and real-world applicability, with metrics 

akin to those of the Validation set. A precision of 0.90, a recall of 0.92, and an 

F1-Score of 0.91 affirm the model’s sustained performance. The average 

precision of 0.89 reinforces its reliability across diverse scenarios. In conclusion, 

these metrics collectively depict its accuracy, sensitivity, and consistency, 

contributing substantively to the enhancement of road maintenance practices and 

safer transportation routes as depicted in Fig. 4. 

 

Fig. 4 – Performance metrics on different dataset splits. 

 

4.3 Visualization of pothole detection using EfficientDet 

This section provides visual documentation of the process and results of 

using an EfficientDet-based model to detect potholes on road surfaces. The 

figures are designed to illustrate both the input to the model and the subsequent 

outputs it generates, enabling a clear understanding of the model’s detection 

accuracy and operational efficacy. Fig. 5 showcases two images. The image 

labeled “Original Image” on the left displays the untreated photographic capture 

of a road, prominently featuring a pothole. This is the raw input provided to the 

EfficientDet model. Adjacent to it on the right, the “Generated Mask” image 

presents the output from the model. The mask is a binary representation where 

white areas pinpoint the detected pothole. This segmentation mask is crisply 

defined, focusing exclusively on the areas identified as potholes, thus 

demonstrating the model’s precision in isolating and recognizing pothole 

features. Fig. 6 further elaborates on the detection process by overlaying the 

detected pothole area onto the original road image. The “Image with Mask 

Overlay” on the right places a red overlay on the regions the model identifies as 

damaged. This visual integration allows for direct comparison and validation of 

the model’s detection against the actual pothole visible in the Original Image on 
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the left. The red highlighted areas correlate closely with the visible damage on 

the road surface, validating the model’s effectiveness in accurately detecting and 

localizing potholes. Together, these figures provide compelling visual evidence 

of the EfficientDet model’s capabilities in pothole detection, essential for 

enhancing road maintenance and safety protocols through timely and precise 

identification of road damage. 
 

 

Fig. 5 – Original road image and the corresponding pothole  

detection mask generated by the EfficientDet model. 
 

 

Fig. 6 – Overlay of the EfficientDet models pothole detection on  

the original road image, highlighting detected areas in red. 

 

4.4 Comparative analysis: EfficientDet vs. State-of-the-art algorithms 

4.4.1 Class-wise performance metrics for pothole detection 

An analysis of performance metrics by class provides critical insights into 

the model’s ability to distinguish between distinct categories, specifically 

between potholes and the surrounding background. This evaluation highlights the 



Advancing Road Maintenance with EfficientDet-based Pothole Monitoring 

69 

model’s precision, recall, and F1-score for each category, demonstrating its 

efficacy in accurately classifying each class. These metrics are essential for 

assessing the model’s discriminatory power and its potential utility in real-world 

applications where accurate differentiation is crucial for effective intervention. 

Table 3 

Class-wise performance metrics for pothole detection. 

Class Precision Recall F1-Score 

Pothole 0.92 0.95 0.93 

Background 0.95 0.92 0.94 

 

Table 3 outlines the class-wise performance metrics for pothole detection 

using the EfficientDet-based model, focusing on two primary classes: Pothole 

and Background. The evaluation uses precision, recall, and F1-score to assess the 

model’s performance thoroughly. For the Pothole class, the model achieved a 

precision of 0.92, indicating that 92% of detections identified as potholes were 

correct. The recall rate of 0.95 indicates that the model identified 95% of all actual 

potholes in the sample. The resulting F1-score of 0.93 confirms the model’s 

strong detection accuracy. Similarly, for the Background class, the model reached 

a precision of 0.95, correctly identifying 95% of non-pothole areas. A recall of 

0.92 means the model successfully recognized 92% of true background areas, 

avoiding misclassification as potholes. The F1-score of 0.94 demonstrates the 

model’s effectiveness in distinguishing background areas. The presented metrics 

highlight the model’s strengths and help identify areas for improvement, 

contributing to an overall assessment of its effectiveness in pothole detection as 

depicted in Fig. 7. 
 

 

Fig. 7 – Class-wise performance metrics for pothole detection. 
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4.4.2 Algorithm performance comparison for pothole detection 

A comprehensive comparison of the EfficientDet-based model with recent 

algorithms reveals its superiority in terms of precision, recall, F1-score, and 

average precision. This comparison showcases the model’s efficacy in pothole 

detection. 

Table 4 

Algorithm performance comparison for pothole detection. 

Algorithm Precision Recall F1-Score Average Precision 

EfficientDet 0.90 0.92 0.91 0.89 

YOLOv5 0.87 0.88 0.87 0.85 

RetinaNet 0.88 0.89 0.88 0.86 

CenterNet 0.84 0.86 0.85 0.82 

SSD 0.89 0.91 0.90 0.88 

Faster R-CNN 0.86 0.87 0.86 0.83 

 

Table 4 offers a thorough evaluation of different algorithms’ performance in 

the realm of pothole detection, facilitating a comprehensive comparison. This 

analysis encompasses key metrics such as precision, recall, F1-score, and average 

precision, providing valuable insights into the capabilities of each algorithm. 

Among the algorithms evaluated, EfficientDet emerged with a precision of 0.90. 

This indicates that when identifying instances as potholes, the algorithm correctly 

classified 90% of the instances as actual potholes. Its recall, denoted as 0.92, 

signifies its ability to capture 92% of the total actual pothole instances present in 

the dataset. The F1-score of 0.91 demonstrates a balance between precision and 

recall, hence confirming the efficacy of EfficientDet in pothole identification. 

The average precision, at 0.89, reinforces the algorithm’s accuracy across varying 

thresholds. YOLOv5, another prominent algorithm, demonstrated a precision of 

0.87. It correctly identified 87% of instances as potholes among its predictions. 

The recall for YOLOv5 stood at 0.88, indicating its effectiveness in capturing 

88% of the actual pothole instances. Its F1-score of 0.87 underscores a 

harmonized precision-recall balance, and the average precision of 0.85 showcases 

its consistency across different threshold levels. RetinaNet, with a precision of 

0.88, achieved 88% accuracy in classifying instances as potholes. Its recall of 

0.89 highlights its capacity to identify 89% of the actual pothole instances. The 

F1-score of 0.88 signifies its balanced performance, while the average precision 

of 0.86 underscores its effectiveness in generating accurate predictions. 

CenterNet, SSD, and Faster R-CNN also demonstrated varying levels of 

performance, with precision values of 0.84, 0.89, and 0.86, respectively. These 

algorithms exhibited similar trends in recall, F1-score, and average precision, 

reflecting their respective strengths and limitations in the context of pothole 
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detection as depicted in Fig. 8. The metrics offered aid in making informed 

decisions regarding the selection of the most suitable algorithm for this critical 

application. 

 

Fig. 8 – Algorithm performance comparison for pothole detection. 

 

4.5 Discussion of findings: insights and implications 

The performance metrics and comparative analysis collectively highlight the 

effectiveness of the EfficientDet-based model in pothole detection. The 

Discussion of Findings section presents a meticulous analysis of the experimental 

results, shedding light on the implications of the EfficientDet-based model's 

performance. Through a comprehensive evaluation of key performance metrics 

such as precision, recall, F1-score, and average precision, the study quantitatively 

showcases the model’s prowess in pothole detection. With a precision of 0.90, 

the model effectively minimizes false positives, while a recall of 0.92 underscores 

its ability to accurately identify actual potholes. This combination is reflected in 

the impressive F1-score of 0.91, demonstrating the model’s balanced 

performance. The high average precision value of 0.89 further validates its 

consistent detection capabilities. 

Furthermore, a comparative analysis against established algorithms reveals 

the distinct superiority of the EfficientDet model. Outperforming competitors 

such as YOLOv5, RetinaNet, CenterNet, SSD, and Faster R-CNN, the 

EfficientDet-based approach secures a competitive edge with its precision, recall, 

F1-score, and average precision values. For instance, the EfficientDet model’s 

precision of 0.90 surpasses YOLOv5’s precision of 0.87. Similarly, its recall of 

0.92 is superior to RetinaNet’s recall of 0.89. This performance differential 

substantiates the model’s potential to redefine road maintenance practices, bolster 

road safety, and optimize infrastructure management. The accurate identification 
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of potholes not only curbs accidents but also minimizes vehicle wear and tear. 

The consistent performance of the EfficientDet model not only augments road 

safety but also empowers efficient resource allocation for infrastructure upkeep. 

In totality, these findings underscore the transformative impact of the 

EfficientDet model across transportation, safety enhancement, and infrastructure 

optimization domains. 

6 Conclusion 

In conclusion, this study introduces a robust framework for an EfficientDet-

based pothole monitoring system, addressing significant challenges in road 

maintenance and transportation safety. The model has undergone extensive 

experimental validation, revealing exceptional performance metrics: a precision 

of 0.90, recall of 0.92, F1-score of 0.91, and average precision of 0.89 on the 

standard test dataset. Additional evaluations under varied road and lighting 

conditions demonstrated the model’s adaptability, with accuracy consistently 

exceeding 88% and precision maintained at 0.87 in low-light scenarios, 

underscoring its operational robustness. These findings confirm the model’s 

precise capability in detecting road potholes while efficiently balancing the 

reduction of false positives against accurate detections. It outperforms existing 

algorithms, demonstrating superior performance across a range of conditions and 

metrics, thereby illustrating its potential to redefine practices in road maintenance 

and enhance safety in transportation systems. Future work will focus on 

enhancing the system by integrating advanced sensor data and broadening its 

detection scope to include other road anomalies. These advancements are 

expected to further improve the system’s diagnostic capabilities and operational 

efficiency, establishing it as a critical tool in the evolution of road maintenance 

and infrastructure management. 
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