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Abstract: This paper presents a Lyapunov-Krasovskii methodology for asym-

ptotic stability of discrete time delay systems. Based on the methods, delay-inde-

pendent stability condition is derived. A numerical example has been working out 

to show the applicability of results derived. 
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1 Introduction 

During the last decades, considerable attention has been devoted to the 

problem of stability analysis and controller design for time-delay systems. The 

existing stabilization results for time delay systems can be classified into two 

types: delay independent stabilization [1-4] and delay-dependent stabilization  

[5-9]. The delay-independent stabilization provides a controller which can 

stabilize a system irrespective of the size of the delay. On the other hand, the 

delay dependent stabilization is concerned with the size of the delay and usually 

provides an upper bound of the delay such that the closed-loop system is stable 

for any delay less than the upper bound.  

Since most physical systems evolve in continuous time, it is natural that 

theories for stability analysis and controller synthesis are mainly developed for 

continuous-time. However, it is more reasonable that one should use a discrete-

time approach for that purpose because the controller is usually implemented 

digitally. Despite this significance mentioned, less attention has been paid to 

discrete-time systems with delays: [10-18]. It is mainly due to the fact that the 

delay-difference equations with known delays can be converted into a higher-

order delay less system by augmentation approach. However, for systems with 

                                                      
1Department of mathematical-technical sciences, Faculty of Technology, University of Nis, 16000 Leskovac, 

Serbia; E-mail: ssreten@ptt.yu 
2Department of Control Eng., Faculty of Mechanical Eng., University of Belgrade, 11000 Belgrade, Serbia; 

E-mail: ddebeljkovic@alfa.mas.bg.ac.yu 



S.B. Stojanović, D.Lj. Debeljković, I. Mladenović 

110 

large known delay amounts, this scheme will lead to large-dimensional systems. 

Furthermore, for systems with unknown delay the augmentation scheme is not 

applicable. 

The use of Lyapunov methods for the stability analysis of time-delay 

systems has been an ever growing subject of interest starting with the pioneering 

works of Krasovskii [19] and Repin [20]. Recently, in [11-18, 21] modified 

Lyapunov–Krasovskiı functionals were introduced for which the time derivative 

includes terms which not only depend on the present but also on the past states 

of the delay system. This modification allows using the functionals for 

robustness analysis of time delay systems.  

However, to the best of our knowledge, very small number of papers are 

investigated Lyapunov-Krasovskii method for discrete systems. Elaydi and 

Yhang [22] are developing a general theory of stability for nonlinear finite delay 

difference equations: a Lyapunov-Krasovskii and Razumikhin method. In [23] 

Lyapunov-Krasovskii method for discrete time delay systems with descriptor 

model transformation has been considered, while [24] is examined Lyapunov-

Krasovskii method for neutral nonlinear discrete time delay systems. 

In this paper, we give some extensions of Lyapunov-Krasovskii method for 

retarded functional differential equation (continuous time delay systems) [25] to 

discrete time delay systems. Our aim had been to develop a new simple general 

theory of stability of autonomous discrete time delay systems expressing as 

counterpart to Lyapunov-Krasovskii method for continuous time delay systems 

proposed in [25]. The obtained theorems hold for both constant and time varying 

delays. The theorems are simple mathematical forms according to [23-24] and 

can apply to autonomous discrete time delay systems. From these theorems can 

be carry out various stability conditions for both linear and nonlinear time delay 

systems.  

The rest of this paper is organized as follows. In Section 2, we introduce our 

notation and preliminaries. Then in Section 3 we develop Lyapunov-Krasovskii 

type asymptotic stability theorems for discrete delay systems. In Section IV, as 

the theoretic application, the Lyapunov-Krasovskii type asymptotic stability 

result is applied to some kinds of discrete delay systems and a simple delay-

independent stability condition is derived in form linear matrix inequality. Also, 

simple example is given to illustrate the obtained results. 

2 Notation and Preliminaries 

 ℝ  Real vector space 

 +ℤ  Positive integer 

 F  Real matrix 
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 I  Identity matrix 

 TF  Transpose of matrix F  

 0F >  Positive definite matrix 

 0F ≥  Positive semi definite matrix 

 ( )Fλ  Eigenvalue of matrix F  

 ( )Fσ F=  Singular value of matrix 

 F ( )max

TA A= λ   Euclidean matrix norm of F  

  

A autonomous, multivariable discrete time-delay system can be represented 

by the difference equation 

  ( ) ( )1 kx k f x+ =  (1) 

with an associated function of initial state 

  ( ) ( ) { }, , 1, ... , 0x θ θ θ h h= ψ ∈ − − + ∆≙ . (2) 

Where  

 
{ }

( ) ( , )

, , ( ), ( 1), , ( ) ( )

n

k

x k x k

k x x k h x k h x k x k+

= ψ ∈

∀θ∈∆ ∀ ∈ − − + = + θ

ℝ

ℤ ≙ …
  

is state vector, n nA ×∈ℝ  is a constant matrix of appropriate dimension and 

h +∈ℤ  is unknown time delay in general case. Let ( ), n∆ ℝD  is space of 

functions mapping the discrete interval ∆  into nℝ . Then, kx ∈D , 

( ) : n∋ φ θ ∆֏ℝD , sup ( )
D

θ∈∆
φ φ θ≙  is the norm of an element φ∈D  in D   

and : nf →ℝD . Let { }: ,
D

γ = φ∈ φ < γ γ∈ ⊂ℝD D D . 

3 Main Results 

In sequel, we give the general Lyapunov-Krasovskii methods for discrete 

time delay systems as counterpart to Lyapunov-Krasovskii methods for 

continuous time delay systems proposed in [25]. 

Definition 1.  The equilibrium state 0x =  of system (1) is asymptotically stable 

if any initial ( )ψ θ  which satisfies 

 ( ) ∞ψ θ ∈D  (3) 
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holds 

 lim ( , ) 0
k

x k
→∞

ψ → . (4) 

Theorem 1. If there exist continuous functional :V →ℝD  and continuous 

nondecreasing functions v  and w : + +→ℝ ℝ  with features (0) (0) 0v w= = , 

( ) 0v s >  and ( ) 0w s >  0s∀ > , such that  

 ( )0 ( ) , (0) 0k k D
V x v x V< ≤ = , (5) 

 ( )1( ) ( ) ( )k k k k D
V x V x V x w x+∆ − ≤ −≙ , (6) 

kx∀ ∈D  satisfying (1), then the solution 0x =  of equations (1) and (2) is 

asymptotically stable. 

Proof. From (6) follows 

 ( )1 0

0 0

( ) ( ) ( )
k k

j k j D
j j

V x V x V x w x+
= =

∆ = − ≤ −∑ ∑  (7) 

and from ( ) 0kV x >  and (7) hold 

 ( ) ( ) ( )0 1

0 0

( ) ( )
k k

k j j k DD D
j j

V x V x w x w x w x+
= =

≥ + ≥ ≥∑ ∑ . (8) 

Using second inequality in (5), and inequalities (8)  hold  

 ( ) ( ) ( ) ( )( )0 0

0

( )
k

k jD D DD
j

w x w x V x v x v
=

≤ ≤ ≤ = ψ θ∑ . (9) 

Based on features of functions v  and w  and ( ) ∞∀ψ θ ∈D  following 

 

( )

( )( )

( )
0

,

,

lim ,

lim 0,

lim ( ) 0,

lim ( ) 0,

D

D

k

j Dk
j

k D
k

k

k

v

w x

x

x k

x k

∞
=

∞

∞

∞

ψ θ < ∞

ψ θ < ∞

< ∞

=

=

=

∑
֏

֏

֏

֏

 (10) 

i.e. system (1) is asymptotically stable.   
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Theorem 2. If there exist positive numbers α  and β  and continuous functional 

:V →ℝD  such that  

 
2

0 ( ) , 0, (0) 0k k kD
V x x x V< ≤ α ∀ ≠ = , (11) 

 
2

1( ) ( ) ( )k k k k D
V x V x V x x+∆ − ≤ −β≙ , (12) 

kx∀ ∈D  satisfying (1) then the solution 0x =  of equation (1) - (2) is asymptoti-

cally stable. 

Proof. The proof follows from proof of Theorem 1 adopting  2( )v s s= α  and  
2( )w s s= β . 

A difficulty in applying Theorem 1 and 2 consists in the facts that in 

practice, one often obtains upper bounds on ( )kV x∆  which only depend on 

( )x k . For such cases, the following theorems are useful. 

 

Theorem 3. If there exist continuous functional :V →ℝD  and continuous 

nondecreasing functions v  and w : + +→ℝ ℝ  with features (0) (0) 0v w= = , 

( ) 0v s >  and ( ) 0w s >  0s∀ > , such that  

 ( )0 ( ) , (0) 0k k D
V x v x V< ≤ = , (13) 

 ( )1( ) ( ) ( ) ( )k k kV x V x V x w x k+∆ − ≤ −≙ , (14) 

kx∀ ∈D  satisfying (1), then the solution 0x =  of equations (1) and (2) is 

asymptotically stable. 

Proof. The proof follows from proof of Theorem 1 considering inequality 

( )k D
x x k≥  i.e. ( ) ( )( )k D

w x w x k≥ . 

 

Theorem 4. If there exist positive numbers α  and β  and continuous functional 

:V →ℝD  such that  

 
2

0 ( ) , 0, (0) 0k k kD
V x x x V< ≤ α ∀ ≠ = , (15) 

 
2

1( ) ( ) ( ) ( )k k kV x V x V x x k+∆ − ≤ −β≙ , (16) 

kx∀ ∈D  satisfying (1) then the solution 0x =  of equations (1) and (2) is 

asymptotically stable. 
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Proof. The proof follows from proof of Theorem 3 adopting  2( )v s s= α  and  
2( )w s s= β .    

Definition 2. Discrete system with time delay (1) is asymptotically stable if and 

only if it’s the solution 0x =  is asymptotically stable. 

4 Aplication and Numerical Example 

Previous results can use for derive simple stability criteria for discrete 

system with time delay 

 ( ) ( ) ( )0 11x k A x k A x k h+ = + − . (17) 

For example, the following lemma presents one such result. 

 

Lemma 1. The discrete time-delay system (1) is asymptotically stable if there 

exist matrices 0P >  and 0Q >  such that following linear matrix inequality 

(LMI) hold 

 

0

1

0

(*) 0

(*) (*)

T

T

Q P A P

Q A P

P

 −
 

− < 
 − 

. (18) 

Proof. Let the Lyapunov functional be 

    
1

( ) ( ) ( ) ( ) ( ), 0, 0
h

T T T T

k

j

V x x k P x k x k j Q x k j P P Q Q
=

= + − − = > = >∑ . (19) 

The forward difference along the solutions of system (1) is 

 

[ ] [ ]
( ) ( ) ( ) ( ) ( ) ( )

0 1 0 1

0 0 0 1

1 1

( ) ( ) ( ) ( ) ( )

( ) ( )
.

( ) ( )(*)

T

T T T

T T T

T

V k A x k A x k h P A x k A x k h

x k P x k x k Q x k x k h Q x k h

x k x kA PA P Q A PA

x k h x k hA PA Q

∆ = + − + − −

− + − − − =

 − +   
=     − −−    

 (20) 

If the following equation is satisfied 

 0 0 0 1

1 1

0
(*)

T T

T

A PA P Q A PA

A PA Q

 − +
Σ < 

− 
≙ , (21) 

then 
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[ ]

0 0 0 1 0 0 0 1

1 1 1 1

0

0 1

1

0

(*)(*) (*)

0
     0

(*)

T T T T

T T

T

T

Q PA PA P Q A PA A PA A PA

QA PA Q A PA

Q P A
P A A

Q A

−   − +  
= +    −−     

−   
= + <  −   

. (22) 

Using Schur complements, [26], it is easy to see that the condition (21) is 

equivalent to 

 

0

1

1

0

(*) 0

(*) (*)

T

T

Q P A

Q A

P−

 −
 

− < 
 − 

.  (23) 

Note that the condition (23) is not LMI condition due to the existence of the 

term 1P−− . Pre and post multiply (23) with { }, ,dig I I P  we obtain LMI 

condition (18). 

If the condition (18) is satisfied then 

 
( ) { } { }

{ } { }

2

2 2

min min

2 2

min min

( )
( ) ( )

( )

             ( ) ( ) ,         

k

x k
V x x k x k h

x k h

x k x k

   ∆ ≤ −λ Σ = −λ Σ + −   − 

≤ −λ Σ = −β β = λ Σ

. (24) 

Likewise, for 0kx ≠  holds 

   

( ) ( ) ( ){ ( ) ( )

{ } { }

{ } { }

1

2 2

max max

max max 1 1

0 max

         ( ) ( )

                     0

h
T T

k

j

D D

T

V x x k Px k x k j Qx k j

P h Q x k x k

P h A PA

=


< ≤ + − − 



≤ λ + λ  = α 

α λ + λ >

∑

≙

 (25) 

so, based on Theorem 4, system (1) is asymptotically stable.   

I sequel, we give simple example to illustrate the previous result (18). 

 

Example 1. Let us consider a linear discrete delay system described by 

  ( ) ( ) ( )0 11x k A x k A x k h+ = + − , 

  0

0.2 0.3

0.1
A

a

 
=  

 
, 1

0.3 0

0.2 0.1
A

 
=℘ 

 
, 



S.B. Stojanović, D.Lj. Debeljković, I. Mladenović 

116 

where ℘  is adjustable parameter and system scalar parameter a takes the 

following values: -0.15 and 0.5. 

The delay-independent asymptotic stability conditions are characterized by 

means of range of parameter ℘  and are summarized in Table 1. For 2Q I= , 

Lemma 1 give results corresponding the stability boundary. This appears that 

performed results have insignificant conservation. 

Table 1  

 Stability conditions. 

Parameter a - 0.15 + 0.50 

Lemma 1 2.11℘ <  1.51℘ <  

Stability boundary  2.11℘ =  1.51℘ =  

5 Conclusion 

In this paper, we give the general Lyapunov-Krasovskii methods for 

discrete time delay systems as counterpart to Lyapunov-Krasovskii methods for 

continuous time delay systems proposed in [25]. Based on these methods, a 

simple delay-independent stability condition is derived. Numerical examples are 

presented to demonstrate the applicability of the present approach. 
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