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Abstract: Research in medical imaging focuses on methods useful in computer-

aided diagnosis systems. In modern times, these systems often have automatic 

detection of regions of interest, and imaging technologies offer numerous 

advantages, like the possibility of developing reliable assisting algorithms. 

Magnetic Resonance Imaging (MRI) provides compelling features for brain tumor 

detection due to good soft tissue contrast and has important clinical value. To help 

clinicians in making diagnoses, current algorithms for processing and medical 

image classification may depend on intricate deep learning designs that demand 

large hardware resources and lengthy execution times. This is with no doubt 

helpful in understanding disease mechanisms and in labeling difficult instances for 

brain tumor identification. On the other hand, statistical low-dimension feature 

sets including co-occurrence-based ones could be useful in dealing with tumor 

detection avoiding possible complexity. In this paper, statistical approaches for 

feature extraction and reduction are analyzed for MRI brain tumor classification, 

and the evaluation of the results is presented on one of the publicly available brain 

tumor detection database commonly used for machine learning tasks. Bayes and 

kNN classifiers are applied for the analysis, as well as four distance metrics, and 

two methods for feature reduction. The results seem promising in developing a 

simple and less hardware-demanding procedure. 

Keywords: Brain tumor detection, Region of Interest, Magnetic Resonance Imaging, 

Statistical moments, Feature extraction and reduction, Machine learning. 

1 Introduction 

In recent years, research in medical imaging has focused on the 

implementation of machine and deep learning algorithms for assisting in making 

proper diagnosing decisions related to various diseases. Some of them employ 

ionizing radiation intending to get adequate organ representation. Not 

surprisingly, systems that do not use this form of radiation are widely applied in 

medical decision-making, such as ultrasound scanning and magnetic resonance 
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imaging (MRI) [1, 2]. In brain tumor detection, ultrasound imaging is at 

disadvantage compared to MRI due to the attenuation of these waves through the 

skull bones. On the other hand, MRI provides brain images with good soft-tissue 

contrast and offers more possibilities throughout measurements. In fact MRI 

enables an efficient characterization for identification of various disorders of the 

central nervous system including demyelinating diseases, cerebrovascular 

disease, dementia, epilepsy, infectious disease, Alzheimer's disease, etc. This is 

mainly due to the good contrast between gray and white matter [2]. Imaging is 

performed in milliseconds, and it enables a rich set of possibilities for developing 

a highly efficient algorithm that can be helpful in both functional and anatomical 

challenges.   

A brain tumor is described as an abnormal growth of unwanted malignant 

cells that disrupts the operation of functioning cells in brain tissue. The lives of 

patients can be saved by early identification and prompt diagnosis of 

malignancies. Thus, mathematical and programming algorithms can be quite 

useful in order to efficiently reveal possible brain anomalies. The study of such 

approaches has a long history, and one of the major challenges is a realization of 

tools and algorithms that are efficient as assistance in diagnosing without dealing 

with unnecessary resources. To develop a straightforward system for brain tumor 

diagnosis, statistical feature extraction may reveal whether in some image cases 

low-complexity models can be used. Here, the application of Bayes and kNN 

classifiers is considered, as well as the application of four metrics, but with the 

examination of feature reduction for obtaining a low-dimension, i.e. reduced 

feature approach. Namely, PCA (Principal Component Analysis) and LDA 

(Linear Discriminant Analysis) methods are tested on statistically based 

techniques that can provide efficient and reliable results [3, 4]. 

The organization of the rest of this paper is as follows. In Section II, 

traditional methods for MRI-based brain tumor detection are considered, as well 

as some of the recent related work. The main steps in the experimental analysis 

are described in Section III, where further details for feature extraction, reduction, 

classifiers design, and performance evaluation are explained. Experimental 

results in this paper show further possibilities for obtaining low-dimension 

feature set. This is presented in Section IV. Finally, the conclusion including 

possibilities for future work can be found in Section V. 

2 Feature Engineering and GLCM Features 

Tumors can be quickly and accurately identified, which can potentially save 

a patient's life. Brain abnormalities are often identified with great success using 

mathematical and technological approaches. As a result, related research focuses 

on machine learning and statistical feature extraction techniques for brain tumor 

identification. Machine learning in medical imaging is found beneficial, whereas 
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for segmentation and classification tasks statistical features are particularly 

valuable [5]. The texture is one of the most significant image and region of 

interest features for the appearance description, especially in the identification of 

brain tumors [6, 7]. Fundamental research questions include the differentiation of 

visual qualities, where statistically defined properties and spatial distribution of 

gray levels in the MRI image are crucial.  

Co-occurrence matrices are one of the most widely used mathematical 

representation of visual texture. The spatial relationship between pixels is taken 

into consideration within the Gray Level Co-occurrence Matrix (GLCM) to 

analyze the texture using statistical methods. Energy, correlation, contrast, and 

homogeneity are four traditional properties that can be retrieved, and are used in 

[5  7]. These features are specifically extracted and form inputs for models like 

neuro-fuzzy ones, as well as for various machine and deep learning solutions  

[8  12]. Support vector machines are used as a classifier in [6], while deep 

convolutional neural networks are built in [11] and [12], using one of the 

publically available datasets for brain tumor identification [13]. Despite common 

features, other descriptors can be considered to deal with automatic brain tumor 

detection challenges. More parameters may produce improved results, but it is of 

importance to analyze common methods for feature number reduction. 

Handcrafted characteristics and feature engineering are still useful for getting 

reliable results in diagnostics. 

3 Brain Tumor Detection and Feature Analysis 

The cancer tissue is supposed to stand out from the neighboring normal tissue 

in MRI images due to the contrast that MRI images provide. However, the choice 

of features for classification is still a matter of debate. Along with the common 

GLCM features, in this paper totally nine features are extracted for brain tumor 

classification. This is a relatively small number compared to the literature for this 

challenge [6, 8, 14]. On the other hand, a smaller feature vector dimension is 

crucial for algorithm execution, particularly when the evaluated dataset indicates 

that a higher level of complexity is not necessary. Therefore, two algorithms for 

feature reduction are tested. The block diagram of the proposed analysis is shown 

in Fig. 1. 

The experimental analysis carried out in this paper includes five main steps: 

1. image (pre-)processing, 

2. tumor region of interest segmentation,  

3. feature extraction, 

4. classification, and 

5. evaluation of the dataset. 
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Fig. 1 – Main steps for brain tumor detection evaluation. 

 

3.1 Image (pre-)processing and tumor region of interest segmentation 

Segmentation of regions of interest corresponding to brain tumors involves 

multiple steps. An input MRI image is preprocessed using a high-pass filter and 

intensities are adjusted to capture relevant pixel candidates. The binarization is 

then used to identify similar regions. In the final step, solidity for tumor 

segmentation is found.  

A high-frequency filter exposes sudden changes in an image [15]. The 

employed filter is a fifth-order Gaussian High-Pass (HP) filter with a cutoff 

frequency of 55 Hz. The grayscale range of the input image is reduced, and the 

contrast is improved by saturating the lowest two percent and the top one percent 

of all pixel intensity values, which reveals possible tumor locations. 

The image histogram displays a bimodal distribution with a deep and sharp 

valley between two pointed peaks because the image contrast has been modified. 

This allows the application of Otsu's approach for automatic thresholding [15]. 

After the thresholding, this binary image contains a variety of white patches, 

some of which may be tumor tissue. If two neighboring pixels are connected 

through eight connectivity, they are considered a part of a single region of 

interest. 

Pre-experimental analysis showed that solidity may be an interesting 

property [1]. Thus, solidity is computed, as well for each region that has been 

labeled. The region's total solidity is quantified as the convex hull area divided 

by the image area. The convex hull area grows, and the computed solidity falls 

as the object form moves away from a closed circle. Tumor areas are more likely 

to be present in images with high solidity [7, 16]. It is assumed that by contrasting 

the calculated solidity of the labeled image with a higher value of solidity (closer 
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to 1), a tumor can be properly identified if it exists. If the solidity is greater than 

0.6 in this instance, the tumor is detected. The region of interest may represent a 

tumor area where a relatively large number of connected white pixels exist within 

the binary image. Still, small white regions can be detected despite the fact there 

is no tumor tissue in the MRI image. A solution is to exploit the properties of the 

segmented region(s) of interest to make a differentiation between healthy and 

tumor tissue. This difficulty may be resolved by computing features that give 

sufficient region area and region shape information. 

3.2 Feature extraction 

The region of interest segmentation is followed by feature extraction. Here, 

exclusively statistical descriptors are analyzed for binary classification. The main 

reason for the integration of statistical features, like the GLCM ones, reflects in 

the fast and easy-to-use way of quantizing region characteristics. Except for 

GLCM-based features, and statistical moments, a few handcrafted features are 

tested to further stimulate the practicability of the feature vector [17]. 

Gray Level Co-occurrence Matrix (GLCM) is used for texture analysis [4]. 

We consider two pixels at a time, called the reference and the neighbor pixel and 

characterize a specific spatial relationship between them. Each entry of the 

GLCM holds the count of the number of times that pair of intensities appears in 

the image with the defined spatial relationship. The frequency at which a pixel 

with intensity value i and a pixel with value j are horizontally adjacent 

determines the GLCM. Offset is not employed to specify the horizontal spatial 

connections between pixels. The GLCM size depends on how many gray levels 

exist. In Fig. 2 example of calculating the GLCM values is shown. For input 

image with intensity levels from zero to three, GLCM will be 44. For feature 

extraction, the dimension of GLCM is 88 pixels since the number of intensity 

values is decreased by scaling to eight levels. 

 

Fig. 2 – Example of calculating the GLCM values. 

 

Energy, correlation coefficient, contrast descriptor, and homogeneity 

descriptor are the usual statistical handcrafted features that are taken from the 

calculated GLCM. In Table 1 four features are briefly summarized. Energy 
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estimates the sum of squared elements from GLCM and represents the first 

feature. The second feature is a correlation, which is a well-known approach for 

describing the dependency between pixels. The contrast value stands here as the 

third feature, and it estimates the local variations. The fourth feature represents 

homogeneity, which here describes the closeness of the distributed pixels. For 

each detected region, the abovementioned features are calculated.  

The only feature that applies comparison, meaning that it is reference-based, 

is the correlation feature. Joint probabilities are applied, and linear dependency 

between neighbouring pixels is found. Note that the means and standard 

deviations that correspond to px and py are calculated, where px(i) represents the 

i-th entry in the marginal-probability matrix obtained by summing the rows of 

GLCM(i, j) and py(i) is the i-th entry in the marginal-probability matrix obtained 

by summing the columns of GLCM(i, j). 

Table 1 

The usual feature description*. 

No. 
Feature description and 

expression no. 
Expressions (1)  (4) 

1 Energy (1) 

1
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, 0

( , )
N

i j

E p i j




   

2 Correlation (2) ** 

1

, 0

( )( ) ( , )N
x y

i j x y

i j p i j
Corr





 


 
  

3 Contrast (3) 

1
2

, 0

( , )
N

i j

C i j p i j




   

4 Homogeneity (4) 
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


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* N represents the number of pixels; i and j the location of pixel;  

   p(i, j) the pixel intensity at the location (i, j). 

** Values µx, µy, are the means and σx and σy are the standard deviations of px and py, 

respectively. 

 

Besides the GLCM features, statistical moments also give information about 

intensity distribution. Hence, they are commonly used as features in medical 

image classification [17, 18]. Let random variable I represent the gray levels of 

an image region. The first-order histogram P(I) is defined as: 

 
number of  pixels with gray level I

( )
total number of pixels in the region

P I  . (5) 
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Based on the definition of P(I), the mean m1 and central moments µk of I are 

given by [16]: 

 

1
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



     , (7) 

where Ng is the number of gray levels, and k  {2, 3, 4}. 

The most frequently applied central moments that are inexpensive to 
computation are: variance, skewness, and kurtosis calculated by µ2, µ3, and µ4 
respectively using (7) [17]. The variance corresponds to histogram width and 
measures the deviation of gray levels from the mean. Skewness is a measure of 
the histogram asymmetry degree around the mean. With the fourth statistical 
moment in mind, the kurtosis measures the histogram sharpness. One way to deal 
with tumor tissue is through higher skewness since it is reasonable to assume that 
tumor tissue is rich in high-intensity values compared to healthy tissue. It is also 
a reliable feature for image classification [15]. In this paper, mean, variance, and 
skewness are found for pre-processed images meaning images with adjusted 
contrast. 

Two additional features are extracted for the experimental analysis, and both 
of them are calculated directly from the binary image. The area of the region(s) 
of interest can point out the higher number of white pixels expected in the number 
of tumor tissue images. Since the solidity parameter has been found useful in the 
final step of a region of interest segmentation, it is added as a feature for the 
classification. The calculation is easy to perform as the area is divided by its 
convex hull areas. 

Using exclusively GLCM features or just first-order statistical moments for 
a region of interest may not be sufficient as input in the classification and for 
obtaining high accuracy results. Nine features are tested to exploit further feature 
reduction based on two common methods.   

3.3 Feature reduction 

Feature extraction may produce a relatively large number of features 
meaning that challenges in detection are presented with plentiful descriptions. 
Therefore, it is commonly expected that the classifier is able to make an improved 
decision while receiving more information leading to classification accuracy 
increases with a higher number of features. However, a large number of features 
can also lead to the creation of the dimensionality curse misinterpretations and 
higher complexity of the algorithm [18, 19]. Hence, there are dimension reduction 
methods that are developed so that the most promising features, which carry the 
most information, can be selected among others, mostly redundant, for the 
classification task. 
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Typically applied statistical methods of dimensional reduction are: Principle 

Component Analysis (PCA) method, vector quantization approach, topographic 

measurements based method, the dimension reduction methods based on the 

scattering matrix or entropy, etc. [18, 19]. 

The basic idea behind the PCA algorithm is that some n-th dimensional 

vector X can be mapped into a new random vector Z by the linear transformation 

as shown in equation (8): 

 
T

Z = A X . (8) 

The matrix A determines the dimension of the new vector Z, and it should be 

chosen so that the loss of information caused by the dimension reduction is 

minimal. The criterion function aims optimization in order to minimize the mean 

square errors of approximation: 

 2

1

n

opt i

i m 

   , (9) 

where m is the desired dimension, n is the current dimension, and λi is the i-th 

eigenvalue. This criterion is equal to the sum of the eigenvalues along those 

coordinates that were omitted during the dimension reductions. As it is in the 

interest of the expression (9) to get the minimum value, it becomes clear that 

during the reduction the coordinates of the vectors whose eigenvalues are of little 

value should be ignored. 

Linear Discriminant Analysis (LDA) method, unlike the previous method, 

considers the separability of classes, if it exists [18]. In the case of two classes, 

the following matrices are formed:  

 1 1 2 2wS = Σ P + Σ P , (10) 

 T T

1 1 0 1 0 2 2 0 2 0( )( ) ( )( )   bS = P M M M M + P M M M M , (11) 

 m bwS = S S , (12) 

where Pi represents the probability of class i occurrence, Mi is the mathematical 

expectation of class i, M0 is the combined mathematical expectation for all classes 

and Σi denotes the covariance matrix of class i. Matrix Sw represents the within-

class scatter matrix, Sb the inter-class scatter matrix, and Sm the mixed one matrix. 

The challenge is the same as with the PCA method, where it is necessary to 

determine the matrix A from equation (8), thus minimizing the selected criterion. 

The most frequently applied criterion is J = ln|Sb
−1 Sw|. At this point the 

transformation matrix A, which minimizes criterion J, can be written in the 

following form:  

 1 2[ ]m   A , (13) 



Tumor Detection using Brain MRI and Low-dimension Co-occurrence Feature Approach 

281 

where Ψ1, Ψ2,…,Ψm are the eigenvectors of the matrix Sb
−1 Sw, which correspond 

to the largest m eigenvalues. By choosing m, a new reduced dimension of the 

vector is selected. Each of these two methods (PCA and LDA) has its own 

advantage. PCA takes the vectors with the highest variances, while LDA 

maintains the separability of the classes. 

3.4 Classifiers design 

For Bayes classifier design, the posterior probabilities qi(X), which represent 

the conditional likelihood that sample X belongs to class i if its precise realization 

is known, need to be defined. The Bayes theorem can be used to determine these 

probabilities if prior probabilities of class occurrence and posterior density 

probability functions of measured vectors qi(X) are known [17  19]. Feature 

vectors are calculated for both images of tumor tissue and images of healthy tissue, 

representing the first (ω1) and the second class (ω2), respectively. The following 

fundamental decision rule for sample X can be utilized based on conditional 

probabilities: 

 1 2 1( ) ( )q x q x X   , (14) 

 2 1 2( ) ( )q x q x X   . (15) 

Although the probability density functions of the classes are unknown, it can 

be assumed that if there is a higher sample number, the probability density 

functions of the classes can be assumed to be Gaussian using the central limit 

theorem [20]: 

 
1( ) ( )

1/2 /2

1
( ) e

(2 )

T

n
f x

  


X M Σ X M

Σ
, (16) 

where n is the dimension of vector X, M is its mathematical expectation, and Σ is 

the feature vector’s covariance matrix. These values are taken from the training 

set for both classes. 

The non-parametric classification is useful in cases where classification 

information based on hypothesis testing is lacking. K-nearest neighbours, often 

known as kNN, is one of the most useful techniques. The method assigns 

appropriate group to the observation point based on how its neighbours are 

labeled. The number of nearby samples included in the categorization is indicated 

by the parameter k in the kNN algorithm [22, 23]. A new circle sample that needs 

to be categorized can be seen in Fig. 3. When k takes, for example value 3, the 

whole circle in the illustration reflects the situation where one square and two 

stars are found as its neighbours. The circle sample is included in the same class 

as the stars since there are more stars than there are squares. However, if four is 

taken for k, the circle will be classified into the squares class because there are 

more of them in the surroundings. In conclusion, k is an essential parameter [23]. 
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Also, the success of the classification depends on methods used for defining what 

the nearest neighbours are. Some of the methods that are going to be considered 

in this paper are: Euclidean, Chebyshev, Mahalanobis distance, and cosine 

similarity [24]. 

 

Fig. 3 – Graphical representation of kNN method, where circle sample  

needs to be assigned to rectangle or star class. 

 

3.5 Evaluation of results 

The whole dataset is consisted from 253 images, where 98 images represent 

healthy brain and 155 images with tumor tissue [13]. Difference of number of 

samples in each class is important to considerate in aim to choose right evaluation 

metric. These difference shows that used database is unbalanced and requires 

metrics that are used for unbalanced dataset, which will be represented in next 

paragraph.  

Both tested classifiers, Bayes and kNN, are evaluated on the test set, which 

is made from 30% of the whole dataset selected randomly, while the rest was 

used for the training set. The whole algorithm was reapplied five times to ensure 

that randomly chosen sets are the best ones for classification, and the results 

represent averaged values. 

The performance is evaluated using metrics extracted from a confusion 

matrix. Two columns and two rows constitute the confusion matrix in this binary 

categorization. The instances in a real class can be represented in each row of the 

matrix, while the examples in a predicted class as can be shown in each column. 

Images containing tumor tissue are marked as “positive”, while those containing 

healthy tissues are marked as “negative.” For performance evaluation, true 

positive rate (TPR), true negative rate (TNR), and balanced accuracy (BACC) are 

calculated as in (17)  (19), respectively. Sensitivity is found as: 

 
TP

Sensitivity
P

 , (17) 
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where TP represents true positive, the number of samples that has been positive 

and are detected as positive, and P represents the whole set of positive samples. 

Similarly, specificity or TNR is calculated as: 

 
TN

Specificity
N

 , (18) 

where TN represents true negative meaning the number of samples that has been 

negative and are detected as negative, and N represents the whole set of negative 

samples. Best parameter for evaluation is balanced accuracy because the dataset 

isn’t balanced. Finally, the balanced accuracy is found as: 

 .
2

TPR TNR
BACC


  (19) 

Another useful way to evaluate the method performance is by ROC 

(Receiver Operating Characteristic) curve. The parameters associated with the 

statistical classifiers can be varied in order to change the TP and FP rates [18]. 

Each set of parameter values can result in a different (TP, FP) pair, i.e. working 

point. It is possible to trade a lower (higher) FP rate for a higher (lower) TP 

detection rate by choice of the corresponding parameter values. Area under the 

curve (AUC)is a metric for evaluation of the classifier performance. When a 

perfect classifier has a TP rate one and FP rate zero, this results in having AUC 

of value one. A random guess results in AUC of value 0.5. 

4 Experimental Results 

Results of the proposed tumor segmentation steps are shown in Fig. 4. Cancer 

tissue is detected, and in a normal tissue image only a few white pixels are found 

as possible candidates for tumor.  

The proposed tumor segmentation steps and feature extraction are used for 

the classification based on Bayes and kNN classifiers. Moreover, the influence of 

feature vector dimension on results is analyzed. Feature reduction is performed 

on feature vectors. It is obtained that less than four features is not enough for the 

classification task. The effects of distance type and different values of k (1 to 40) 

on accuracy are also analyzed for kNN methods. 

Here, dimension reduction serves for checking whether smaller feature 

dimensions can be used without affecting the results. Two methods, LDA and 

PCA, are tested. Both methods are considered for dimensionality reduction to 

four and six features, with the goal of accuracy analysis. Overall results can be 

seen in Table 2. 

In Figs. 5 and 6, ROC for both classifiers for four feature approach is shown. 

For both classifiers, higher TPR has achieved for LDA feature reduction method, 

which also can be seen from Table 2. 
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(a) 

 

 
(b) 

Fig. 4 – Results of segmentation for (a) cancer tissue and (b) normal tissue. 

 
      (a)                                                                 (b) 

Fig. 5  ROC curve for the Bayes classifier using four features  

obtained by (a) LDA method and (b) PCA method. 
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      (a)                                                                 (b) 

Fig. 6  ROC curves for the kNN classification using four features  

obtained by (a) LDA method and (b) PCA method. 

 

Table 2 

Overall test results. 

Test 

no. 

Reduction method 

(vector dimension) 
Classifier 

BACC 

[%] 

TPR 

[%] 

TNR 

[%] 

1 LDA (4) Bayes 81 84 78 

2 LDA (4) kNN 80 82 78 

3 LDA (6) Bayes 98.3 96.6 100 

4 LDA (6) kNN 98 100 96 

6 PCA (4) Bayes 72 74 70 

7 PCA (4) kNN 82.3 93.1 72.4 

8 PCA (6) Bayes 96.5 93.5 100 

9 PCA (6) kNN 96.5 96.5 96.5 

 

In Fig. 7 and Fig. 8, ROC for both classifiers for six feature approach is 

shown. For both classifiers, higher TPR has achieved for LDA feature reduction 

method, which also can be seen from Table 2. Using six features increased 

accuracy and decreased false positive rate. 

LDA method gives better results due to using more information for reduction 

than PCA method. The k value for this challenge is analyzed for feature 

dimensions of four and six, obtained by LDA method. For feature vector 

consisted of six values the best results are obtained when k equals 11, which 
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matches with literature preposition for k (choosing k ∼ N  where N represents 

the number of samples) and for four features the k has value 2. Mahalonobis 

distance, as well as LDA method use covariance matrix of feature vectors so it is 

expected for those algorithms to give reliable results. Mahalonobis distance gave 

the best result in both cases, which can be seen in Fig. 9. 

 

  

      (a)                                                                 (b) 

Fig. 7  ROC curves for the Bayes classification using six features  

obtained by (a) LDA method and (b) PCA method. 

 

  

      (a)                                                                 (b) 

Fig. 8  ROC curves for the kNN classification using six features  

obtained by (a) LDA method and (b) PCA method with noticeable  

advantage of Mahalonobis distance. 
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(a) 

 
(b) 

Fig. 9  Accuracy versus parameter k for four types of  

distances for (a) six and (b) four features (LDA method). 
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5 Conclusion 

The analyzed classification methods give satisfying results compared to the 

methods based on neural networks or fuzzy logic [9  12]. With the aim of 

obtaining such results, several techniques for image processing, feature selection 

and feature reduction are applied, as well as two classifiers. The results primarily 

depend on the training and the test set, so the results shown are averaged over 

several choices.  In this paper the kNN method with Mahalanobis distance metric 

is selected as a method with high accuracy. 

Methods based on neural networks or fuzzy logic can give improved results, 

however, they require a lot of hardware power and are often time-consuming in 

the cases where it is not needed. In this sense, these classical methods have an 

advantage. In practice, these methods can be used as parts of an automated system 

to help medical diagnostics.  

Future work will be oriented through using additional types of features with 

other datasets to distinguish cases where more complex approaches are inevitable 

without wasting resources unnecessarily. Testing the whole algorithm with larger 

datasets with different tumor types is expected as the next step. This will require 

deeper analysis of different tumor type images. Detailed feature analysis for this 

challenge is crucial for developing algorithms similar to the proposed. 
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